Thrashing If a process does not have “enough” pages, the page-fault rate is very high. This leads to: low CPU utilization operating system thinks that.

Slides:



Advertisements
Similar presentations
VIRTUAL MEMORY MANAGEMENT
Advertisements

Background Virtual memory – separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution. Logical.
Page 15/4/2015 CSE 30341: Operating Systems Principles Allocation of Frames  How should the OS distribute the frames among the various processes?  Each.
Chapter 10: File-System Interface
1 Chapter 11: File-System Interface  File Concept  Access Methods  Directory Structure  File System Mounting  File Sharing  Protection  Chapter.
Chapter 10: File-System Interface
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 11: File-System Interface File Concept Access Methods Directory Structure.
Chapter 10: File-System Interface
File System Interface CSCI 444/544 Operating Systems Fall 2008.
Dr. Kalpakis CMSC 421, Operating Systems. Fall File-System Interface.
1 File Management (a). 2 File-System Interface  File Concept  Access Methods  Directory Structure  File System Mounting  File Sharing  Protection.
04/02/2004CSCI 315 Operating Systems Design1 File System Interface.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 10: File-System Interface.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition File-System Interface.
04/05/2010CSCI 315 Operating Systems Design1 Virtual Memory Wrap-up; File System Interface.
Chapter 10: File-System Interface
10.1 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Chapter 10: File-System Objectives To discuss file-system design tradeoffs, including.
Chapter 10: File-System Interface Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 10: File-System Interface File Concept.
File Concept l Contiguous logical address space l Types: Data: numeric, character, binary Program: source, object (load image) Documents.
03/30/2007CSCI 315 Operating Systems Design1 Virtual Memory cont’d.; File System Interface.
File Concept §Contiguous logical address space §Types: l Data: Numeric Character Binary l Program.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 10: File-System Interface.
Chapter 10 File System Interface
Operating System Concepts with Java – 7 th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007 Chapter 10: File-System Interface.
Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill Technology Education Lecture 10 Operating Systems.
ITEC 502 컴퓨터 시스템 및 실습 Chapter 10-1: File Systems Mi-Jung Choi DPNM Lab. Dept. of CSE, POSTECH.
Page 19/17/2015 CSE 30341: Operating Systems Principles Optimal Algorithm  Replace page that will not be used for longest period of time  Used for measuring.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 10: File-System Interface.
Silberschatz, Galvin and Gagne  Operating System Concepts File Concept Contiguous logical address space Smallest user allocation Non-volatile.
Chap 10 File-System Interface. Objectives To explain the function of file systems To describe the interfaces to file systems To discuss file-system design.
10.1 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 11: File-System Interface File Concept Access Methods Directory Structure File-System.
Chapter 10: File-System Interface Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Jan 1, 2005 Chapter 10: File-System.
Chapter 10: File-System Interface 10.1 Silberschatz, Galvin and Gagne ©2011 Operating System Concepts – 8 th Edition 2014.
File System Interface. File Concept Access Methods Directory Structure File-System Mounting File Sharing (skip)‏ File Protection.
Page 110/19/2015 CSE 30341: Operating Systems Principles Chapter 10: File-System Interface  Objectives:  To explain the function of file systems  To.
Silberschatz, Galvin, and Gagne  Applied Operating System Concepts Module 11: File-System Interface File Concept Access Methods Directory Structure.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 11: File-System Interface File Concept Access Methods Directory Structure.
Disk & File System Management Disk Allocation Free Space Management Directory Structure Naming Disk Scheduling Protection CSE 331 Operating Systems Design.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Lecture 18: File-System Interface (Ch 10)
Chapter 10: File-System Interface Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 10: File-System Interface File Concept.
Silberschatz and Galvin  Operating System Concepts Module 10: File-System Interface File Concept Access :Methods Directory Structure Protection.
14.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 10 & 11: File-System Interface and Implementation.
It consists of two parts: collection of files – stores related data directory structure – organizes & provides information Some file systems may have.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 10: File-System Interface.
Access Methods File store information When it is used it is accessed & read into memory Some systems provide only one access method IBM support many access.
Operating Systems Files, Directory and File Systems Operating Systems Files, Directory and File Systems.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 11: File-System Interface File Concept Access Methods Directory Structure.
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems File System Interface.
CSE Operating System Principles File Systems.
Lecture : chapter 9 and 10 file system 1. File Concept A file is a collection of related information defined by its creator. Contiguous logical address.
10.1 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Chapter 10: File-System 10.1 File Concept 10.2 Access Methods 10.3 Directory Structure.
File System Interface CSSE 332 Operating Systems
Chapter 13: File-System Interface
Unit V File-System.
Module 10: File-System Interface
Chapter 10: File System.
Chapter 11: File-System Interface
Module 9: Virtual Memory
Chapter 9: Virtual Memory
Chapter 11: File-System Interface
EECE.4810/EECE.5730 Operating Systems
5: Virtual Memory Background Demand Paging
Chapter 10: File-System Interface
Directory Structure A collection of nodes containing information about all files Directory Files F 1 F 2 F 3 F 4 F n Both the directory structure and the.
Chapter 10: File-System Interface
Chapter 10: File-System Interface Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Jan 1, 2005 Chapter 10: File-System.
File-System Interface
Module 10: File-System Interface
Module 9: Virtual Memory
Lecture 4: File-System Interface
Presentation transcript:

Thrashing If a process does not have “enough” pages, the page-fault rate is very high. This leads to: low CPU utilization operating system thinks that it needs to increase the degree of multiprogramming because of low cpu utilization another process added to the system Thrashing  a process is busy swapping pages in and out

Thrashing (Cont.)

Demand Paging and Thrashing Why does demand paging work? Locality model Process migrates from one locality to another Localities may overlap E.g. for (……) { computations; } ….. for (….. ) { Why does thrashing occur?  size of locality > total memory size

Working-Set Model   working-set window  a fixed number of page references Example: 10,000 instruction WSSi (working set of Process Pi) = total number of pages referenced in the most recent  (varies in time) if  too small will not encompass entire locality if  too large will encompass several localities if  =   will encompass entire program D =  WSSi  total demand frames if D > m  Thrashing Policy if D > m, then suspend one of the processes

Working-set model

Keeping Track of the Working Set Approximate with interval timer + a reference bit Example:  = 10,000 Timer interrupts after every 5000 time units Keep in memory 2 bits for each page Whenever a timer interrupts copy and sets the values of all reference bits to 0 If one of the bits in memory = 1  page in working set Why is this not completely accurate? Improvement = 10 bits and interrupt every 1000 time units

Page-Fault Frequency Scheme Establish “acceptable” page-fault rate If actual rate too low, process loses frame If actual rate too high, process gains frame

Other Issues -- Prepaging To reduce the large number of page faults that occurs at process startup Prepage all or some of the pages a process will need, before they are referenced But if prepaged pages are unused, I/O and memory was wasted Assume s pages are prepaged and α of the pages is used Is cost of s * α save pages faults > or < than the cost of prepaging s * (1- α) unnecessary pages? α near zero  prepaging loses

Other Issues – Page Size Page size selection must take into consideration: fragmentation table size I/O overhead locality

Other Issues – TLB Reach TLB Reach - The amount of memory accessible from the TLB TLB Reach = (TLB Size) X (Page Size) Ideally, the working set of each process is stored in the TLB. Otherwise there is a high degree of page faults. Increase the Page Size. This may lead to an increase in fragmentation as not all applications require a large page size Provide Multiple Page Sizes. This allows applications that require larger page sizes the opportunity to use them without an increase in fragmentation.

Other Issues – Program Structure Int[128,128] data; Each row is stored in one page Program 1 for (j = 0; j <128; j++) for (i = 0; i < 128; i++) data[i,j] = 0; 128 x 128 = 16,384 page faults Program 2 for (i = 0; i < 128; i++) for (j = 0; j < 128; j++) data[i,j] = 0; 128 page faults

Wrapup Memory hierarchy: Speed: L1, L2, L3 caches, main memory, disk etc. Cost: disk, main memory, L3, L2, L1 etc. achieve good speed by moving “interesting” objects to higher cache levels while moving “uninteresting” objects to lower cache levels Hardware provides reference bit, modify bit, page access counters, page table validity bits OS sets them appropriately such that it will be notified via page fault OS provides policies Hardware provides mechanisms Implement VM, COW etc. that are tuned to observed workloads

Chapter 10: File-System Interface Objectives: To explain the function of file systems To describe the interfaces to file systems To discuss file-system design tradeoffs, including access methods, file sharing, file locking, and directory structures To explore file-system protection

File Concept Contiguous persistent logical address space, can be storing data or programs File Structure: None - sequence of words, bytes Simple record structure Lines Fixed length Variable length Complex Structures Formatted document Relocatable load file Can simulate last two with first method by inserting appropriate control characters Who decides: Operating system Program

File Types – Name, Extension

File Attributes Name – only information kept in human-readable form Identifier – unique tag (number) identifies file within file system Type – needed for systems that support different types Location – pointer to file location on device Size – current file size Protection – controls who can do reading, writing, executing Time, date, and user identification – data for protection, security, and usage monitoring Information about files are kept in the directory structure, which is maintained on the disk

Examples UNIX: ls -li 26047823 -rw-r--r-- 1 surendar staff 596480 Mar 16 20:17 Lecture22.ppt

File Operations File is an abstract data type File operations: Create Write Read Reposition within file (seek) Delete Truncate Open(Fi) – search the directory structure on disk for entry Fi, and move the content of entry to memory Close (Fi) – move the content of entry Fi in memory to directory structure on disk

Open Files Several pieces of data are needed to manage open files: File pointer: pointer to last read/write location, per process that has the file open File-open count: counter of number of times a file is open – to allow removal of data from open-file table when last processes closes it Disk location of the file: cache of data access information Access rights: per-process access mode information

Open File Locking Provided by some operating systems and file systems Mediates access to a file Mandatory or advisory: Mandatory – access is denied depending on locks held and requested Advisory – processes can find status of locks and decide what to do

Access Methods Sequential Access read next write next reset no read after last write (rewrite) Direct Access read n write n position to n rewrite n n = relative block number

Sequential-access File

Simulation of Sequential Access on a Direct-access File

Directory Structure A collection of nodes containing information about all files Directory Files F 1 F 2 F 3 F 4 F n Both the directory structure and the files reside on disk Backups of these two structures are kept on tapes

A Typical File-system Organization

Operations Performed on Directory Search for a file Create a file Delete a file List a directory Rename a file Traverse the file system

Organize the Directory (Logically) to Obtain Efficiency – locating a file quickly Naming – convenient to users Two users can have same name for different files The same file can have several different names Grouping – logical grouping of files by properties, (e.g., all Java programs, all games, …)

Single-Level Directory A single directory for all users Naming problem Grouping problem

Two-Level Directory Separate directory for each user Path name Can have the same file name for different user Efficient searching No grouping capability

Tree-Structured Directories

Tree-Structured Directories (Cont) Efficient searching Grouping Capability Current directory (working directory) cd /spell/mail/prog type list

Tree-Structured Directories (Cont) Absolute or relative path name Creating a new file is done in current directory Delete a file rm <file-name> Creating a new subdirectory is done in current directory mkdir <dir-name> Example: if in current directory /mail mkdir count mail prog copy prt exp count Deleting “mail”  deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories Have shared subdirectories and files

Acyclic-Graph Directories (Cont.) Two different names (aliasing) If dict deletes list  dangling pointer Solutions: Backpointers, so we can delete all pointers Variable size records a problem Backpointers using a daisy chain organization Entry-hold-count solution New directory entry type Link – another name (pointer) to an existing file Resolve the link – follow pointer to locate the file

General Graph Directory

General Graph Directory (Cont.) How do we guarantee no cycles? Allow only links to file not subdirectories Garbage collection Every time a new link is added use a cycle detection algorithm to determine whether it is OK