On Directly Mapping Relational Databases to RDF and OWL

Slides:



Advertisements
Similar presentations
Dr. Leo Obrst MITRE Information Semantics Information Discovery & Understanding Command & Control Center February 6, 2014February 6, 2014February 6, 2014.
Advertisements

Schema Matching and Query Rewriting in Ontology-based Data Integration Zdeňka Linková ICS AS CR Advisor: Július Štuller.
CH-4 Ontologies, Querying and Data Integration. Introduction to RDF(S) RDF stands for Resource Description Framework. RDF is a standard for describing.
© 2006 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Use Case: Populating Business Objects.
Chapter 3 : Relational Model
GridVine: Building Internet-Scale Semantic Overlay Networks By Lan Tian.
RDF and RDB 1 Some slides adapted from a presentation by Ivan Herman at the Semantic Technology & Business Conference, 2012.
Of 27 lecture 7: owl - introduction. of 27 ece 627, winter ‘132 OWL a glimpse OWL – Web Ontology Language describes classes, properties and relations.
Building and Analyzing Social Networks Web Data and Semantics in Social Network Applications Dr. Bhavani Thuraisingham February 15, 2013.
Analyzing Minerva1 AUTORI: Antonello Ercoli Alessandro Pezzullo CORSO: Seminari di Ingegneria del SW DOCENTE: Prof. Giuseppe De Giacomo.
Ontologies and the Semantic Web by Ian Horrocks presented by Thomas Packer 1.
Databases: Some Research Opportunities For Latin America Marcelo Arenas Pontificia Universidad Católica de Chile Marcelo Arenas Pontificia Universidad.
Semantic Web Bootcamp Dominic DiFranzo PhD Student/Research Assistant Rensselaer Polytechnic Institute Tetherless World Constellation.
Ontology Development Kenneth Baclawski Northeastern University Harvard Medical School.
Workshop – 10, December 2014, Berlin ICCS / NTUA Greece Efthymios Chondrogiannis An Intelligent Ontology Alignment Tool Dealing with Complicated Mismatches.
TELEFÓNICA I+D Date: 25th October 2007 Sergio Garcí á Gómez © 2007 Telefónica Investigación y Desarrollo, S.A. Unipersonal SPIDERS Semantic.
Ultrawrap: SPARQL Execution on Relational Data Juan F. Sequeda, Daniel P. Miranker University of Texas - Austin ISWC 2009 Seoul National University Internet.
SQL Databases are a Moving Target Juan F. Sequeda – Syed Hamid Tirmizi –
“Solving Data Inconsistencies and Data Integration with a Data Quality Manager” Presented by Maria del Pilar Angeles, Lachlan M.MacKinnon School of Mathematical.
DANIEL J. ABADI, ADAM MARCUS, SAMUEL R. MADDEN, AND KATE HOLLENBACH THE VLDB JOURNAL. SW-Store: a vertically partitioned DBMS for Semantic Web data.
Relational Databases to RDF (a.k.a RDB2RDF) Juan F. Sequeda Dept of Computer Science University of Texas at Austin.
Master Informatique 1 Semantic Technologies Part 11Direct Mapping Werner Nutt.
Querying with SPARQL Tuesday, October 28, 2014 Technical Exchange on Network Management Interoperability Andrea Westerinen JHU-APL/Nine Points Solutions.
On the Semantics of R2RML and its Relationship with the Direct Mapping Juan F. Sequeda Research in Bioinformatics and Semantic Web (RiBS) Lab Department.
Metadata. Generally speaking, metadata are data and information that describe and model data and information For example, a database schema is the metadata.
Dimitrios Skoutas Alkis Simitsis
SPARQL Query Graph Model (How to improve query evaluation?) Ralf Heese and Olaf Hartig Humboldt-Universität zu Berlin.
Semantic Web Exam 1 Review.
Semantic Technologies and Application to Climate Data M. Benno Blumenthal IRI/Columbia University CDW /04-01.
Scalable Distributed Reasoning Using MapReduce Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen Department of Computer Science, Vrije.
Shridhar Bhalerao CMSC 601 Finding Implicit Relations in the Semantic Web.
RDF Access to Relational Databases Ashok Malhotra Oracle Corporation.
Application Ontology Manager for Hydra IST Ján Hreňo Martin Sarnovský Peter Kostelník TU Košice.
R Store Angelique Moscicki Oshani Seneviratne Sergio Herrero-Lopez.
Conclusions Presenter: Manolis Koubarakis Extended Semantic Web Conference 2012.
Of 38 lecture 6: rdf – axiomatic semantics and query.
Semantic Water Quality Portal Jin Guang Zheng and Ping Wang Tetherless World Constellation.
Semantic Interoperability in GIS N. L. Sarda Suman Somavarapu.
Ontology Technology applied to Catalogues Paul Kopp.
NEDA ALIPANAH, MARIA ADELA GRANDO DBMI 11/19/2012.
Dmitry Mouromtsev, Aleksei Romanov, Dmitry Volchek and Fedor Kozlov Laboratory ITMO University, St. Petersburg, Russia “Metadata Extraction from.
Linking Ontologies to Spatial Databases
Components.
Relational Model Database Management Systems, 3rd ed., Ramakrishnan and Gehrke, Chapter 3.
Module 2: Intro to Relational Model
Formal ontologies vs. triple based KR gap or convergence?
RDF and RDB 1 Some slides adapted from a presentation by Ivan Herman at the Semantic Technology & Business Conference, 2012.
Collaborative Vocabulary Management
Adding ICs to OWL Ming Fang 07/10/2009.
Achieving Semantic Interoperability of Cancer Registries
Information mediators
Web Ontology Language for Service (OWL-S)
Introduction lecture1.
Analyzing and Securing Social Networks
11/12/2018.
Discrete Structures for Computer Science
Ontology.
ece 720 intelligent web: ontology and beyond
Chapter 4 The Relational Model Pearson Education © 2009.
Chapter 4 The Relational Model Pearson Education © 2009.
UMBC AN HONORS UNIVERSITY IN MARYLAND
The Relational Model Transparencies
Ontology.
Chapter 2: Intro to Relational Model
Chapter 2: Intro to Relational Model
Example of a Relation attributes (or columns) tuples (or rows)
Prof. Bhavani Thuraisingham The University of Texas at Dallas
Only first semantic applications
On Provenance of Queries on Linked Web Data
Information - the lifeblood of the business
Presentation transcript:

On Directly Mapping Relational Databases to RDF and OWL Juan F. Sequeda Marcelo Arenas Daniel P. Miranker

Agenda Direct Mapping and Property Direct Mapping DM Properties of DM Extended DM Conclusion

Direct Mapping A direct mapping is a default and automatic way of translating a relational database to RDF. A direct mapping M is a total function from RC to G. RC is the set of all triples of the form(R,Σ,I) R is relational schema Σ is a set of PKs and FKs over R I is an instance of R G is the set of all RDF graph

Fundamental Properties Information Preservation If direct mapping does not lose any information about the relational instance being translated. Query Preservation if every query over a relational database can be translated into an equivalent query over the RDF graph resulting from the mapping.

Desirable Properties Monotonicity Semantics Preservation if we insert new data to the database, then the elements of the mapping that are already computed are unaltered. Semantics Preservation A direct mapping is semantics preserving if the satisfaction of a set of PKs and FKs by a relational database is encoded in the translation process.

Direct Mapping DM Storing relational databases Storing an ontology Translating relational schemas into OWL Translating database instances into RDF Example

Storing relational databases REL(r) e.g. REL("STUDENT") ATTR(a,r) e.g. ATTR("NAME","STUDENT") PK(a,r) e.g. PK("SID","STUDENT") FK(a,r,b,s) e.g. FK("CODE","COURSE","DID","DEPT") VALUE(v,a,t,r) e.g. VALUE("1","SID","id1","STUDENT")

Storing an ontology Class(c) OPn(p1,…,pn,d,r) DTP(p,d) c is a class p1,...,pn (n ≥ 1) form an object property with domain d and range r. DTP(p,d) p is a data type property with domain d.

Storing an ontology(cont'd) Identifying binary relations: BINREL(R,A,B,S,C,T,D)← PK(A,B,R),¬THREEATTR(R), FK(A,R,C,S),R≠S, FK(B,R,D,T),R≠T, ¬TWOFK(A,R),¬TWOFK(B,R), ¬ONEFK(A,B,R),¬FKTO(R) BINREL("ENROLLED","SID","CID", "STUDENT","SID","COURSE","CID")

Storing an ontology(cont'd) Identifying class: CLASS(X) ← REL(X),¬ISBINREL(X) ISBINREL(X) ← BINREL(X,A,B,S,C,T,D) E.g. CLASS("DEPT") CLASS("STUDENT")

Storing an ontology(cont'd) Identifying object properties: OP(X,Y,S,T) ← FK(X,S,Y,T), ¬ ISBINREL(S) E.g. OP("CODE","DID","COURSE","DEPT")

Storing an ontology(cont'd) Identifying data type properties: DTP(A,R) ← ATTR(A,R), ¬ISBINREL(R) E.g. DTP("NAME","STUDENT")

Translating schemas into OWL Generating IRI Class CLASSIRI(R,X) ← CLASS(R),CONCAT(base,R,X) E.g. http://example.edu/db/STUDENT Data type property DTP_IRI(A,R,X) ← DTP(A,R), CONCAT(base,R,"#",A,X) http://example.edu/db/STUDENT#NAME

Translating schemas into OWL(cont’d) Generating IRI Object property OP_IRI(R,A,B,S,C,T,D,X) ← BINREL(R,A,B,S,C,T,D), CONCAT(base,R,"#",A,",",B,",",C,",",D,X) E.g. http://example.edu/db/ENROLLED#SID,CID,SID,CID OP_IRI(X,Y,S,T,X) ← OP(X,Y,S,T), CONCAT(base,S,",",T,"#",X,",",Y,X) http://example.edu/db/COURSE,DEPT#CODE,DID

Translating schemas into OWL(cont’d) Translating relational schemas Class TRIPLE(U,"rdf:type","owl:Class") ← CLASS(R),CLASSIRI(R,U) Data type property TRIPLE(U,"rdf:type","owl:DatatypeProperty") ← DTP(A,R), DTP_IRI(A,R,U) TRIPLE(U,"rdfs:domain",W) ← DTP(A,R), DTP_IRI(A,R,U), CLASSIRI(R,W)

Translating schemas into OWL(cont’d) Translating relational schemas Object property TRIPLE(U,"rdf:type","owl:ObjectProperty") ← OP(X,Y,S,T),OP_IRI(X,Y,S,T,U) TRIPLE(U, "rdfs:domain",W) ← OP(X,Y,S,T),OP_IRI(X,Y,S,T,U),CLASSIRI(S,W) TRIPLE(U, "rdfs:range",W) ← OP(X,Y,S,T),OP_IRI(X,Y,S,T,U),CLASSIRI(T,W)

Translating instances into RDF Generating IRI ROWIRI(V,A,T,R,X) ← PK(A,R), VALUE(V,A,T,R), CONCAT(base,R,"#",A,"=",V,X) E.g. Given VALUE("1","SID","id1","STUDENT") and PK("SID","STUDENT"),the IRI is: http://example.edu/db/STUDENT#SID=1 BLANKNODE(T,R,X) ← VALUE(V,A,T,R), CONCAT("_:",R,T,X)

Translating instances into RDF(cont’d) Translating relational instances CLASS TUPLEID(T,R,X) ← CLASS(R),PK(A,R), VALUE(V,A,T,R),ROWIRI(V,A,T,R,X) CLASS(R),¬HASPK(R), VALUE(V,A,T,R),BLANKNODE(T,R,X) TRIPLE(U,"rdf:type",W) ← VALUE(V,A,T,R),TUPLEID(T,R,U),CLASSIRI(R,W) E.g. TRIPLE("http://example.edu/db/STUDENT#SID=1", "rdf:type", "http://example.edu/db/STUDENT")

Translating instances into RDF(cont’d) Translating relational instances Object Property(from BINREL) TRIPLE(U,V,W) ← BINREL(R,A,B,S,C,T,D), VALUE(V1,A,T1,R),VALUE(V1,C,T2,S), VALUE(V2,B,T1,R),VALUE(V2,D,T3,T), TUPLEID(T2,S,U), OP_IRI(R,A,B,S,C,T,D,V), TUPLEID(T3,T,W) E.g. TRIPLE("http://example.edu/db/STUDENT#SID=1", "http://example.edu/db/ENROLLED#SID,CID,SID,CID", "http://example.edu/db/COURSE#CID=1")

Translating instances into RDF(cont’d) Translating relational instances Object Property(from FK) TRIPLE(U,V,W) ← OP(A,B,S,T), VALUE(V1,A,T1,S),VALUE(V1,B,T2,T), TUPLEID(T1,S,U), OP_IRI(A,B,S,T,V), TUPLEID(T2,T,W) E.g. TRIPLE("http://example.edu/db/COURSE#CID=1", "http://example.edu/db/COURSE,DEPT#CODE,DID", "http://example.edu/db/DEPT#DID=1")

Translating instances into RDF(cont’d) Translating relational instances Data type Property TRIPLE(U,V,W) ← DTP(A,R),VALUE(W,A,T,R), W≠NULL,TUPLEID(T,R,U),DTP_IRI(A,R,V) E.g. TRIPLE("http://example.edu/db/STUDENT#SID=1", "http://example.edu/db/STUDENT#NAME", "John")

Properties of DM Information preservation Query preservation Monotonicity Semantics preservation

Query Preservation of DM Translate relational algebra into equivalent SPARQL query selection projection rename join union difference SPARQL query generated by

Semantics Preservation of DM Example of PK violation T1.SID = 1, T1.NAME = John T2.SID = 1, T2.NAME = Peter Database is inconsistent Resulting RDF graph is consistent DM is not semantics preserving.

Extended DM: DMpk Extended rules Properties of DMpk TRIPLE(a,"owl:differentFrom",a) ← PK(X,R), VALUE(V,X,T1,R),VALUE(V,X,T2,R),T1 ≠ T2 TRIPLE(a,"owl:differentFrom",a) ← PK(X,R),VALUE(V,X,T,R),V = NULL Properties of DMpk Information preservation Query preservation Monotonicity Semantic preservation if considers only PKs

Extended DM: DMpk+fk Extended rules Properties of DMpk+fk VIOLATION(S) ← FK(X,S,Y,T), VALUE(V,X,T,S),V ≠ NULL, ¬ISVALUE(V,Y,T) TRIPLE(a,"owl:differentFrom", a) ← VIOLATION(S) Properties of DMpk+fk Information preservation Query preservation Monotonicity Semantic preservation

Conclusion Direct mapping DM Extended DM Information preservation Query preservation Monotocity Extended DM DMpk DMpk+fk “No monotone direct mapping is semantics preserving”

The End Thank You!