Far Infrared Spectroscopy of Anti-Vinyl Alcohol Hayley Bunn & Paul Raston Far Infrared Spectroscopy of Anti-Vinyl Alcohol The 71st International Symposium on Molecular Spectroscopy June 2016, Champaign-Urbana adelaide.edu.au
Vinyl Alcohol Asymmetric Top Cs symmetry b a c Vinyl Alcohol Acetaldeyde Asymmetric Top Cs symmetry 15 Fundamental Modes; 11 a’ and 4 a” University of Adelaide
University of Adelaide
Rotamers + torsion Syn-Vinyl alcohol Anti-Vinyl alcohol University of Adelaide
Previous Work Syn conformer observed in microwave S. Saito, Chem. Phys. Lett. 42, 3 (1976) and infrared where 9 out of 15 IR modes were observed D-L Joo, et al. J. Mol. Spec. 197, 68 (1999) Anti conformer has only been observed in microwave region M. Rodler, J. Mol. Spec. 114, 23 (1985) Syn-Vinyl alcohol Anti-Vinyl alcohol University of Adelaide
Experimental ∆ + University of Adelaide http://www.synchrotron.org.au/index.php/aussyncbeamlines/ftir/samples-techniques/gas-phase#Multipass_Glass_Cells http://www.quantumdiaries.org/2014/01/14/accelerating-down-under/ University of Adelaide
b Spectra a c University of Adelaide
Fit Hot Band Fundamental University of Adelaide
Rotational constants (cm-1) Ground state V15 = 1 V15 = 2 A 2.09705 2.07074 2.05040 B 0.34877 0.34819 0. 34765 C 0.29898 0.29955 0.29990 Centrifugal distortion constants (cm-1) 105 ΔK 3.74553 3.58777 3.41242 106 ΔJK -1.92747 -1.89162 -1.85785 107 ΔJ 2.44017 2.45299 2.46442 107 δK 10.3821 8.94886 7.71078 108 δJ 4.99019 4.94872 4.91741 109 HK 1.13134 1.02863 0.93525 University of Adelaide
Constants B A C University of Adelaide
Rotational constants (cm-1) Ground state (v=0) Rotational constants (cm-1) Experimental Literature MW A 2.09705 B 0.34877 C 0.29898 Centrifugal distortion constants (cm-1) 105 ΔK 3.74553 3.74926 106 ΔJK -1.92747 -1.94468 107 ΔJ 2.44017 2.43502 106 δK 1.03821 1.03738 108 δJ 4.99019 4.98678 109 HK 1.13134 - M. Rodler, J. Mol. Spec. 114, 23 (1985). University of Adelaide
Rotational constants (cm-1) Calculations Ground state V15 = 1-0 Rotational constants (cm-1) Experimental Calculated A 2.09705 2.094808 2.07074 2.066470 B 0.34877 0.346879 0.34819 0.346407 C 0.29898 0.297588 0.29955 0.298343 Centrifugal distortion constants (cm-1) 105 ΔK 3.74553 3.52374 3.58777 - 106 ΔJK -1.92747 -1.68539 -1.89162 107 ΔJ 2.44017 2.35580 2.45299 107 δK 10.3821 10.1736 8.94886 108 δJ 4.99019 4.75112 4.94872 109 HK 1.13134 -1.68238 1.02863 University of Adelaide
Rotational constants (cm-1) Ground state V15 = 1 V15 = 2 A 2.09705 2.07074 2.05040 B 0.34877 0.34819 0. 34765 C 0.29898 0.29955 0.29990 Centrifugal distortion constants (cm-1) 105 ΔK 3.74553 3.58777 3.41242 106 ΔJK -1.92747 -1.89162 -1.85785 107 ΔJ 2.44017 2.45299 2.46442 107 δK 10.3821 8.94886 7.71078 108 δJ 4.99019 4.94872 4.91741 109 HK 1.13134 1.02863 0.93525 University of Adelaide
Perturbations University of Adelaide
Perturbations University of Adelaide
Rotamers + torsion Syn-Vinyl alcohol Anti-Vinyl alcohol University of Adelaide
Future work He droplets Stark spectroscopy Syn-VA Anti-VA University of Adelaide
Acknowledgements Paul Raston (supervisor) Greg Metha (supervisor) Rohan Hudson + Greg Metha’s group Tao Liang Gary Douberly’s lab (Alaina and Joe) University of Adelaide