MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO

Slides:



Advertisements
Similar presentations
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
1 OBSERVATION OF TWO  =0 + EXCITED ELECTRONIC STATES IN JET-COOLED LaH Suresh Yarlagadda Ph.D Student Homi Bhabha National Institute Bhabha Atomic Research.
HIGH RESOLUTION INFRARED SPECTROSCOPY OF N 2 O-C 4 H 2 AND CS 2 −C 2 D 2 DIMERS MAHDI YOUSEFI S. SHEYBANI-DELOUI JALAL NOROOZ OLIAEE BOB MCKELLAR NASSER.
Electronic transitions of ScP N. Wang, Y. W. Ng, K. F. Ng, and A. S.-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong.
E LECTRONIC T RANSITIONS OF S CANDIUM M ONOXIDE NA WANG, Y.W. NG, and A. S-C. CHEUNG The University of Hong Kong 109 Pokfulam Road, Hong Kong SAR, P.R.China.
Application of 2D fluorescence spectroscopy to Metal Containing Species Damian L. Kokkin and Timothy Steimle. Department of Chemistry and Biochemistry.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Anh T. Le and Timothy C. Steimle The electric dipole moment of Iridium monosilicide, IrSi Department of Chemistry and Biochemistry, Arizona State University,
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Stark Study of the F 4     X 4  7/2 (1,0) band of FeH Jinhai Chen and Timothy C. Steimle Dept. of Chemistry& BioChem, Arizona State University,
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
June 18, nd Symp. on Molec. Spectrosc. The Pure Rotational Spectra of VN (X 3  r ) and VO (X 4  - ): A Study of the Hyperfine Interactions Michael.
Laser spectroscopy of Iridium monophosphide H. F. Pang, Y. Xia, A. W. Liu and A. S-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam.
Pump/Probe Microwave-Optical Double Resonance (PPMODR) Study of Tungsten Carbide( WC) a and Platinum Carbide(PtC) b Funded by Fang Wang, Chengbing Qin,
The 68 th International Symposium on Molecular Spectroscopy, June 2013 Fang Wang a, Allan Adam b and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
Optical Zeeman Spectroscopy of the (0,0) bands of the B 3  -X 3  and A 3  -X 3  Transitions of Titanium Monoxide, TiO Wilton L. Virgo, Prof. Timothy.
THE ZEEMAN EFFECT IN THE OPTICAL SPECTRUM OF MANGANESE MONOHYDRIDE: MnH. Jamie Gengler and Timothy C. Steimle Department of Chemistry and Biochemistry.
HIGH RESOLUTION ROTATIONAL SPECTROSCOPY STUDY OF THE ZEEMAN EFFECT IN THE 2 Π 1/2 MOLECULE PbF Alex Baum, Benjamin Murphy, Richard Mawhorter Trevor J.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
The 66 th International Symposium on Molecular Spectroscopy, June 2010 Fang Wang,Anh Lee and Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
W I S S E N T E C H N I K L E I D E N S C H A F T  Januar 13 Name und OE, Eingabe über > Kopf- und Fußzeile.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
1 Zeeman patterns in FT resolved fluorescence spectra of NiH Amanda Ross, Patrick Crozet, Heather Harker and Cyril Richard Laboratoire de Spectrométrie.
The 67 th International Symposium on Molecular Spectroscopy, June 2012 Ruohan Zhang, Chengbing Qin a and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
Optical Zeeman Spectroscopy of Iron Monohydride, FeH Jinhai Chen, Timothy C. Steimle Department of Chemistry and Biochemistry, Arizona State University.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
Fourier Transform Emission Spectroscopy of Some New Bands of ReN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ and P. F. Bernath.
STARK AND ZEEMAN EFFECT STUDY OF THE [18.6]3.5 – X(1)4.5 BAND OF URANIUM MONOFLUORIDE, UF COLAN LINTON, ALLAN G. ADAM University of New Brunswick TIMOTHY.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
Magnetic g e -factors and electric dipole moments of Lanthanide monoxides: PrO * Hailing Wang, and Timothy C. Steimle Department of Chemistry and Biochemistry.
Pure Rotational Spectra of the Rare Isotopologues of TiO (X 3 Δ r ) Andrew P. Lincowski, DeWayne T. Halfen, and Lucy M. Ziurys Department of Chemistry.
Ramya Nagarajan, Jie Yang and Dennis J. Clouthier A spectroscopic study of the linear-bent electronic transitions of jet-cooled HBCl and BCl 2 And The.
Funded by: NSF-Exp. Timothy C. Steimle Hailing Wang & Anh Le Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The A 2  -X 2  + Band System.
The optical spectrum of SrOH revisited: Zeeman effect, high- resolution spectroscopy and Franck- Condon factors TRUNG NGUYEN, DAMIAN L KOKKIN, TIMOTHY.
* Funded by NSF. Xiujuan Zhuang and Timothy C. Steimle* Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ Neil Reilly,
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
THE QUINTESSENTIAL BOND OF MODERN SCIENCE. THE DETECTION AND CHARACTERIZATION OF DIATOMIC GOLD SULFIDE, AuS. DAMIAN L KOKKIN, RUOHAN ZHANG, TIMOTHY STEIMLE.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
The 69 th International Symposium on Molecular Spectroscopy, June 2014 U. Illinois Champagne-Urbanna, Timothy C. Steimle, Hailing Wang a and Ruohan Zhang.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Funded by: NSF-Exp. Tongmei Ma & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA Optical Zeeman Spectroscopy of ytterbium.
Raman spectroscopy Solid state spectroscopy class
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
Spectroscopy in support of parity nonconservation measurements: the A2Π-X2Σ+(0,0) of Barium Monofluoride Anh T. Le, Sarah Frey and Timothy C. Steimle Department.
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Resonant two-photon ionization spectroscopy of jet-cooled OsC
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Timothy C. Steimle , T. Maa, S. Muscarella, and Damian Kokkin
Jun Jiang, Angelar Muthike, and Robert W. Field
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Spectroscopic Research of Pt + NH3
Jinjun Liu, Ming-Wei Chen, John T. Yi,
Optical Zeeman Spectroscopy of Calcium Fluoride, CaF
THE STRUCTURE OF PHENYLGLYCINOL
Electronic bands of ScC in the region 620 – 720 nm
Fourier Transform Emission Spectroscopy of CoH and CoD
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
University of California, Berkeley
Michael A. Flory Shawn K. McLamarrah Lucy M. Ziurys
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
Presentation transcript:

MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO TRUNG NGUYEN, RUOHAN ZHANG, TIMOTHY STEIMLE

Outline Motivation Experimental setups High-resolution spectroscopy of B4Π - X4Σ- Analysis of the high-resolution spectroscopy and Zeeman effect

Motivation Supporting spectroscopy for Magnetic investigation using Magnetic Doppler Imaging (MDI) Hot “Jupiter” Cool stars Brown dwarfs Keenan et al (1952) Désert et al (2008) VO The ground and excited states Zeeman g-factor for the ground and excited states

Vanadium oxide, VO Advantages: Near infrared spectra Isotope Abundance (%) I 50V 0.25 6 51V 99.75 7/2 Near infrared spectra Magnetic dipole moment A’4Φ A4Π B4Π C4Σ- D4Δ X4Σ- VO State Configuration X4Σ- σb2πb4σ4s1δ3d2 A4Π, A’4Φ σb2πb4σ4s1δ3d1π3d1 B4Π σb2πb4δ3d2π3d1 C4Σ- σb2πb4δ3d2σ*13d D4Δ σb2πb4σ4s1δ3d1σ*13d Hübner, Olaf, Julius Hornung, and Hans-Jörg Himmel. The Journal of chemical physics 143.2 (2015): 024309. E. Broclawik, T.J. Borowski, Chem. Phys. Lett., 339, 433 (2001) 

Relevant previous spectroscopic studies There is a need for recording the optical Zeeman spectroscopy of B4Π X4Σ− (0,0) X 4S- : Pure rotational spectra: Suenram et al (1991) and Flory et al (2007); Spectroscopic parameters for X 4S- B4Π: Huang et al (1991) (Merer’s group) B4Π X4Σ− (1, 0): Cheung et al (1994) (Merer’s group) B4Π X4Σ− (0,0): Adam et al (1995) Combined analysis of microwave, laser-induced fluorescence and Fourier transform emission spectra Hyperfine structures and spectroscopic parameters for B4Π High temperature fluorescence Buffer gas cooling experiment C4Σ- ‒ X 4S: Weistein et al. (1992) (Doyle’s group) samples subjected to a magnetic field The first molecular beam study on the optical Zeeman spectroscopy of B4Π X4Σ− (0,0)

Production of VO: Ablated V + Ar(95%)/N2O (5%) 11/27/2018 2. Experimental details Ablation laser Generation via laser ablation/supersonic expansion Supersonic expansion Pulsed valve (~600 psi) 0.25’’ V rod Production of VO: Ablated V + Ar(95%)/N2O (5%)

High-resolution optical Zeeman spectroscopy Electromagnetic coil Optical Zeeman Spectroscopy PMT Gated photon counter LIF skimmer Ablation laser N2O Single freq. tunable laser radiation V rod Pulse valve Well collimated molecular beam Rot.Temp.<20 K The chemical intermediates studied in this work were prepared under supersonic jet conditions using a pulsed laser ablation technique. Two types of pulsed laser- based spectroscopy were used to record electronic spectra, namely laser-induced fluorescence (LIF), dispersed fluorescence (DF)

Field-free spectra of B4Π  X4Σ- transition ( = 1/2) Q41 Observations LIF signal Predictions(Pgopher) at 20K

rR42(0.5) F’=2; F”=3 rQ41(0.5) F’=3; F”=3 Observations Predictions (Pgopher) LIF signal

tQ41(2.5) F’=6; F”=6 uR41(1.5) F’=3; F”=2 Observations Predictions (Pgopher) LIF signal

N Modelling the Spectra VO molecule: S = 3/2, L = 0 Effective Hamiltonian for the ground state X4Σ- N J+I=F F1 F2 F3 F4 N+S=J Ziurys et al (2007) VO molecule: S = 3/2, L = 0 Hund’s case (b) coupling S = J+ N 4 close fine structure components I = 7/2 Apply Hund’s case (b) effective Hamiltonian Heff = Hrot + Hss + Hmhf + HeqQ Effective Hamiltonian for the excited state B4Π Heff =Hso + Hrot + Hss + Hmhf + HeqQ 𝐻 𝐹𝑖𝑛𝑒 𝑠𝑡𝑟𝑢𝑐 =𝐴 𝐿 𝑍 𝑆 𝑍 + 𝐴 𝐷 2 𝐿 𝑍 𝑆 𝑍 , 𝑅 2 + + 2𝜆 3 (3 𝑆 𝑍 2 − 𝑆 2 )+𝐵 𝑅 2 − 𝐷 2 𝑅 2 , 𝑅 2 + +𝛾 𝑅 ⋅ 𝑆 𝐻 𝑚ℎ𝑓 =[𝑎 𝐿 𝑍 +(𝑏+𝑐) 𝑆 𝑍 ] 𝐼 𝑍 =[𝑎 𝐿 𝑍 +( 𝑏 𝐹 + 2 3 𝑐) 𝑆 𝑍 ] 𝐼 𝑍 ≡ ℎ 𝛺 𝐼 𝑍 𝐻 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑙𝑒 = 𝑒𝑄 𝑞 0 4 𝐼 (2 𝐼 −1 (3 𝐼 𝑍 − 𝐼 2

Field-free fitting result and optimized parameters (in cm-1) B4Π (in cm-1) X4Σ- (in MHz) Optimized Adam et al (1995) Flory et al (2007) T1/2 12571.492906(46) 12571.6885(40) B 0.510500(31) 0.512652(52) 16 379.618 6(14) 106D -7.90(33) 0.6634(1) D 0.019 363 8(39) q 0.041162(25) 0.0001733(1) g 672.168(39) gD 0.001 970(75) gs 0.220 4(81) l 60 881.03(55) lD 0.018 16(61) 102a 1.755(42) 1.093(14) bF 778.737(66) 102d -0.2962(71) -0.3591(38) c -129.84(19) 103eQq0 1.14(1.95) 1.5(66) cI 0.192 8(51) bs -0.660(14) eqQ -2.5(1.3) RMS= 0.00211 cm-1

Zeeman low-J rQ41(0.5) and rR41(0.5) branch features of B4Π1/2  X4Σ- (Perpendicular polarization) Field Free ~ 100 Gauss ~ 100 Gauss uR41(1.5) Field Free rQ41(0.5)

Zeeman low-J tQ41(2.5) branch feature of B4Π1/2  X4Σ- (Parallel polarization) ~ 100 Gauss tQ41(2.5) Field Free

Summary The first cold molecular beam study on the optical Zeeman spectroscopy of B4Π  X4Σ− (0,0) was conducted The field-free and optical Zeeman spectra have been recorded and are being analyzed The determined field-free parameters are physically “unrealistic” Alternative models are being pursuited Spectra are being measured

Thank you for your attention