Estimating Logit Models using Household Level and Aggregate Data

Slides:



Advertisements
Similar presentations
Copula Representation of Joint Risk Driver Distribution
Advertisements

Generalized Method of Moments: Introduction
Discrete Choice Modeling
Point Estimation Notes of STAT 6205 by Dr. Fan.
Copula Regression By Rahul A. Parsa Drake University &
Brief introduction on Logistic Regression
Chapter 4: Linear Models for Classification
Models with Discrete Dependent Variables
Estimating Multiple- Discrete Choice Models: An Application to Computerization Returns Presentation by Le Chen, Zhen Huo, Bernabe Lopez-Martin, Shihui.
Lecture 14-2 Multinomial logit (Maddala Ch 12.2)
Part 23: Simulation Based Estimation 23-1/26 Econometrics I Professor William Greene Stern School of Business Department of Economics.
Analysis of a Yield Management Model for On Demand IT Services Parijat Dube IBM Watson Research Center with Laura Wynter and Yezekael Hayel.
Empirical Financial Economics 2. The Efficient Markets Hypothesis - Generalized Method of Moments Stephen Brown NYU Stern School of Business UNSW PhD Seminar,
Classification and Prediction: Regression Analysis
Distribution Function properties. Density Function – We define the derivative of the distribution function F X (x) as the probability density function.
Single and Multiple Spell Discrete Time Hazards Models with Parametric and Non-Parametric Corrections for Unobserved Heterogeneity David K. Guilkey.
[Part 15] 1/24 Discrete Choice Modeling Aggregate Share Data - BLP Discrete Choice Modeling William Greene Stern School of Business New York University.
9. Binary Dependent Variables 9.1 Homogeneous models –Logit, probit models –Inference –Tax preparers 9.2 Random effects models 9.3 Fixed effects models.
1 G Lect 11W Logistic Regression Review Maximum Likelihood Estimates Probit Regression and Example Model Fit G Multiple Regression Week 11.
Berry-Levensohn-Pakes EMA (1995) Paper Notes ECON 721.
Logistic Regression Database Marketing Instructor: N. Kumar.
Linear vs. Logistic Regression Log has a slightly better ability to represent the data Dichotomous Prefer Don’t Prefer Linear vs. Logistic Regression.
Inference for Regression Simple Linear Regression IPS Chapter 10.1 © 2009 W.H. Freeman and Company.
April 4 Logistic Regression –Lee Chapter 9 –Cody and Smith 9:F.
Maximum Likelihood Estimation Methods of Economic Investigation Lecture 17.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Logistic Regression. Linear Regression Purchases vs. Income.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Generalized Linear Models (GLMs) and Their Applications.
Linear Methods for Classification Based on Chapter 4 of Hastie, Tibshirani, and Friedman David Madigan.
[Part 15] 1/24 Discrete Choice Modeling Aggregate Share Data - BLP Discrete Choice Modeling William Greene Stern School of Business New York University.
CWR 6536 Stochastic Subsurface Hydrology
- 1 - Preliminaries Multivariate normal model (section 3.6, Gelman) –For a multi-parameter vector y, multivariate normal distribution is where  is covariance.
6. Ordered Choice Models. Ordered Choices Ordered Discrete Outcomes E.g.: Taste test, credit rating, course grade, preference scale Underlying random.
Imperfect Competition in Milk Retailing Vardges Hovhannisyan.
Logistic Regression and Odds Ratios Psych DeShon.
[Part 5] 1/43 Discrete Choice Modeling Ordered Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
MathematicalMarketing Slide 5.1 OLS Chapter 5: Ordinary Least Square Regression We will be discussing  The Linear Regression Model  Estimation of the.
The Probit Model Alexander Spermann University of Freiburg SS 2008.
1/26: Topic 2.2 – Nonlinear Panel Data Models Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA William.
The Probit Model Alexander Spermann University of Freiburg SoSe 2009
Biointelligence Laboratory, Seoul National University
Chapter 7. Classification and Prediction
ECE3340 Numerical Fitting, Interpolation and Approximation
Probability Theory and Parameter Estimation I
Microeconometric Modeling
Linear Mixed Models in JMP Pro
CH 5: Multivariate Methods
Linear Regression (continued)
Drop-in Sessions! When: Hillary Term - Week 1 Where: Q-Step Lab (TBC) Sign up with Alice Evans.
Impact of Sales Promotions on When, What, and How Much to Buy
A Logit model of brand choice calibrated on scanner data
Regression Analysis Week 4.
Propagating Uncertainty In POMDP Value Iteration with Gaussian Process
Probability & Statistics Probability Theory Mathematical Probability Models Event Relationships Distributions of Random Variables Continuous Random.
Estimating Logit Models using Household Level and Aggregate Data
Microeconometric Modeling
Estimation Error and Portfolio Optimization
A Gentle Introduction to Linear Mixed Modeling and PROC MIXED
Discrete Choice Modeling
Microeconometric Modeling
Estimation Error and Portfolio Optimization
Econometrics Chengyuan Yin School of Mathematics.
Microeconometric Modeling
Econometric Analysis of Panel Data
Sampling Distributions (§ )
Microeconometric Modeling
Chapter 6 Logistic Regression: Regression with a Binary Dependent Variable Copyright © 2010 Pearson Education, Inc., publishing as Prentice-Hall.
Estimating Logit Models using Household Level and Aggregate Data
Probabilistic Surrogate Models
Presentation transcript:

Estimating Logit Models using Household Level and Aggregate Data K. Sudhir PhD Seminar Yale University

Three Estimation Models Individual Level Models Guadagni and Little (1983) Heterogeneity Modeled exponential smoothing measure Kamakura and Russell (1994) Unobserved Heterogeneity using discrete segment approach Gonul and Srinivasan (1993) Unobserved Heterogeneity using continuous distribution approach We will discuss the first two models Aggregate Level Models Sudhir (2001) Chintagunta (2001) paper for its discussion on how without attributes, it uses a covariance matrix of the intercepts to model attribute similarities.

Guadagni and Little (1983) Utility Model Loyalty Normalization Likelihood function Optimization and computing Standard Errors

Loyalty Variable %Constructing Loyalty Variable BrLoy=ones(NObs,NProd); for i = 1:1:NCons; BrLoy(PIDSt(i),:)=1/NProd; for j=PIDSt(i)+1:1:PIDSt(i+1)-1; BrLoy(j,:)= alph*BrLoy(j-1,:)+(1-alph)*Ch(j,:); end;

Normalization %Subtracting out the normalized product's variables for i=1:1:NProd; Price1(:,i)=Price(:,i)-Price(:,NProd); Feat1(:,i)=Feat(:,i)-Feat(:,NProd); Disp1(:,i)=Disp(:,i)-Disp(:,NProd); BrLoy1(:,i)=BrLoy(:,i)-BrLoy(:,NProd); end;

Likelihood function function f= GLNegLogLik(x) %Global Variables made available from the main function global Price1 Feat1 Disp1 BrLoy1 Ch NObs NProd; expU=ones(NObs,NProd); for i=1:1:NProd-1; expU(:,i)=exp(x(i)+x(NProd)*Price1(:,i)+x(NProd+1)*Feat1(:,i)+x(NProd+2)*Disp1(:,i) +x(NProd+3)*BrLoy1(:,i)); end; expU(:,NProd)=1; SU=(sum(expU'))'; Prob=expU./[SU SU SU SU]; f = -sum(sum(Ch.*log(Prob)));

Maximizing Likelihood, Computing SEs options=optimset('Display','iter','TolFun',1e-4,'TolX', 1e-4,'MaxIter',25, 'MaxFunEvals',560, 'LargeScale','off', 'HessUpdate', ‘bfgs’); [x, fval,exitflag,output,grad,hessian] = fminunc('GLNegLogLik',x0,options); se=sqrt(diag(inv(hessian))); tstat=x./se;

Exercise Estimate the model without the loyalty variable Report the estimates Compute U2 Compute the U2 for the model with the loyalty variable as here.

Kamakura and Russell (1989) Utility Model Discrete Heterogeneity Normalization Likelihood function Optimization and computing Standard Errors

expU=ones(NObs,NProd*NSeg); SU=ones(NObs,1); Prob=ones(NObs,NSeg); Lik=ones(NCons,NSeg);

Computing Event Likelihood for Each Segment for j=1:1:NSeg; for i=1:1:NProd-1; expU(:,(j-1)*NProd+i)=exp(x((j-1)*(NProd+NVar-1)+i) +x((j-1)*(NProd+NVar-1)+NProd)*Price1(:,i) +x((j-1)*(NProd+NVar-1)+NProd+1)*Feat1(:,i) +x((j-1)*(NProd+NVar-1)+NProd+2)*Disp1(:,i)); end; expU(:,j*NProd)=1; SU=(sum(expU(:,(j-1)*NProd+1:j*NProd)'))'; Temp=(expU(:,(j-1)*NProd+1:j*NProd)./[SU SU SU SU]).^Ch; Prob(:,j)=prod(Temp')';

Likelihood of each person’s purchase string for i=1:1:NCons; Lik(i,:)=prod(Prob(freq(i):freq(i+1)-1,:)); end;

Computing the Overall Log-Likelihood siz=exp(x((NProd-1+NVar)*NSeg+1:(NProd-1+NVar)*NSeg+NSeg-1)); siz=[siz; 1]; siz=siz/sum(siz); LLik=Lik*siz; f=-sum(log(LLik));

Computing Standard Errors %To get standard errors when we use transformed variables Nx=size(x,1) A=eye(Nx); A(Nx-1,Nx-1)=(exp(x(NSeg*(NProd+NVar-1)+1))* (1+exp(x(NSeg*(NProd+NVar1)+2))))/ ((1+exp(x(NSeg*(NProd+NVar-1)+1))+exp(x(NSeg*(NProd+NVar-1)+2))))^2; A(Nx,Nx)=(exp(x(NSeg*(NProd+NVar-1)+2))* (1+exp(x(NSeg*(NProd+NVar-1)+1))))/ ((1+exp(x(NSeg*(NProd+NVar-1)+1))+exp(x(NSeg*(NProd+NVar-1)+2))))^2; se=sqrt(diag(A*inv(hessian)*A'));

Exercise Estimate the model with only preference heterogeneity Estimate the optimal number of segments using the AIC or BIC criterion. Report the estimates and standard errors Estimate the model with both preference and response heterogeneity as in the code

Using Aggregate Data to Estimate Random Coefficients Logit Model Several Issues Simulation to integrate over random coefficients distribution Drawing from a multivariate distribution Endogeneity Use of IV Estimation Linearization of the mean utility to facilitate IV by using contraction mapping Generalized Method of Moments Two part approach to estimate linear and nonlinear parameters

Drawing multivariate normals w1=randn(NObs1,NCons); w2=randn(NObs1,NCons); aw1=b(1)*w1+b(2)*w2; aw2=b(3)*w1;

Contraction Mapping; Simulation based Integration while (k >= km) de=de1; sh=zeros(NObs1,1); psh=zeros(NObs1,1); for i=1:1:NCons; psh=exp(aw(:,i)+awp(:,i)+de); psh=reshape(psh',2,NObs)'; spsh=sum(psh')'; psh(:,1)=psh(:,1)./(1+spsh); psh(:,2)=psh(:,2)./(1+spsh); sh=sh+reshape(psh',NObs1,1); end; sh=sh/NCons; de1=de+log(s)-log(sh); k=max(abs(de1-de));

Analytically estimating the linear parameters; Optimizing over nonlinear parameters blin=inv(xlin'*z*W*z'*xlin)*(xlin'*z*W*z'*d); er=d-xlin*blin; f=er'*z*W*z'*er;

Exercise Compute the standard errors for the estimates in the code using approach suggested in Greene Optional Exercise: Add a supply side equation assuming Bertrand pricing by the two firms