State evolution in cold helium Rydberg gas

Slides:



Advertisements
Similar presentations
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Advertisements

Status and activity on LIF-technique development in NFI. I.Moskalenko, N.Molodtsov, D.Shcheglov.
Marina Quintero-Pérez Paul Jansen Thomas E. Wall Wim Ubachs Hendrick L. Bethlem.
Patricia Aguar Bartolomé Institut für Kernphysik, Universität Mainz PSTP 2013 Workshop, Charlottesville 11th September 2013.
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Probing the Rydberg spectrum of strontium – group meeting Probing the Rydberg spectrum of strontium James Millen.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Approaches to Rydberg spatial distribution measurement Graham Lochead 24/01/11.
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
The story unfolds… James Millen The story unfolds… – Group meeting 12/04/10.
Dipole-dipole interactions in Rydberg states. Outline Strontium experiment overview Routes to blockade Dipole-dipole effects.
Studying our cold Rydberg gas James Millen. Level scheme (5s 2 ) 1 S 0 461nm 32MHz (5s5p) 1 P 1 (5sns) 1 S 0 (5snd) 1 D 2 Continuum ~413nm Studying our.
Studying a strontium MOT – group meeting Studying a strontium MOT James Millen.
1 Coherent processes in metastable helium at room temperature Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker Laboratoire Aimé Cotton, Orsay, France.
Autoionization of strontium Rydberg states
Excited state spatial distributions Graham Lochead 20/06/11.
A strontium detective story James Millen Strontium detective – Group meeting 19/10/09 Ions‽
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
TRIGGERING EXCIMER LASERS BY PHOTOIONIZATION FROM A CORONA DISCHARGE* Zhongmin Xiong and Mark J. Kushner University of Michigan Ann Arbor, MI USA.
Enhancement of the Resonance Ionization Laser Ion Source (RILIS) at ISOLDE - Setting up a complementary all solid-state laser system Sebastian Rothe Gentner.
Kinetic Investigation of Collision Induced Excitation Transfer in Kr*(4p 5 5p 1 ) + Kr and Kr*(4p 5 5p 1 ) + He Mixtures Md. Humayun Kabir and Michael.
Yiting Zhangb, Mark Denninga, Randall S. Urdahla and Mark J. Kushnerb
Vibrational and Geometric Structures of La 3 C 2 O and La 3 C 2 O + from MATI Spectra and ab initio Calculations Mourad ROUDJANE, Lu WU, and Dong-Sheng.
Instrumentation in the Molecular Physics Group Presented by: Mats Larsson.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Spectrumbeat signal characteristics of the used diode lasers for transversal cooling and trapping For stabilizing the diode lasers we use the mean of saturation.
Plasma diagnostics using spectroscopic techniques
Accurate density measurement of a cold Rydberg gas via non-collisional two-body process Anne Cournol, Jacques Robert, Pierre Pillet, and Nicolas Vanhaecke.
Experimental and Theoretical Investigations of HBr+He Rotational Energy Transfer M. H. Kabir, I. O. Antonov, J. M. Merritt, and M. C. Heaven Department.
Obtaining Ion and Electron Beams From a source of Laser-Cooled Atoms Alexa Parker, Gosforth Academy  Project Supervisor: Dr Kevin Weatherill Department.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Diamond Sensor Diamond Sensor for Particle Detection Maria Hempel Beam Impact Meeting Geneva,
Considerations on Rydberg transport for antihydrogen formation Daniel Comparat Laboratoire Aimé Cotton Orsay FRANCE.
Experiments with Stark-decelerated and trapped polar molecules Steven Hoekstra Molecular Physics Department ( Gerard Meijer) Fritz-Haber-Institutder Max-Planck-Gesellschaft.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Molecular Triplet States: Excitation, Detection, and Dynamics Wilton L. Virgo Kyle L. Bittinger Robert W. Field Collisional Excitation Transfer in the.
Research perspectives IAPP: COLDBEAMS 7 th October, 2013, Paris Andy McCulloch.
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
Dynamics of Low Density Rydberg Gases Experimental Apparatus E. Brekke, J. O. Day, T. G. Walker University of Wisconsin – Madison Support from NSF and.
Duke University, Physics Department and the Fitzpatrick Institute for Photonics · Durham, NC Collective Nonlinear Optical Effects in an Ultracold Thermal.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Daisuke Ando, * Susumu Kuma, ** Masaaki Tsubouchi,** and Takamasa Momose** *Kyoto University, JAPAN **The University of British Columbia, CANADA SPECTROSCOPY.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Millimeter Wave Spectroscopy of Rydberg States of Molecules in the Region of GHz David Grimes, Yan Zhou, Timothy Barnum, Robert Field Department.
Intramolecular Energy Redistribution in C 60 M. Boyle, Max Born Institute.
Laser activities at University of Pavia in support to SPES project Daniele Scarpa.
Rydberg atoms part 1 Tobias Thiele.
Microwave Spectroscopy of the Autoionizing 5d 3/2 n l States of Barium Edward Shuman Tom Gallagher.
Assignment Methods for High N Rydberg States of CaF Vladimir S. Petrovi ć, Emily E. Fenn, and Robert W. Field Massachusetts Institute of Technology International.
Multi-step and Multi-photon Excitation Studies of Group-IIB Elements
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Photoelectron Spectroscopy of Doped Helium Nanodroplets
Resonant dipole-dipole energy transfer
DOE Plasma Science Center Control of Plasma Kinetics
Excitation control of a cold strontium Rydberg gas
N2 Vibrational Temperature, Gas Temperature,
ENERGY TRANSFER IN HBr + HBr AND HBr + He COLLISIONS
Marco G. Giammarchi* Istituto Nazionale Fisica Nucleare - Milano
Mass-Analyzed Threshold Ionization Spectroscopy
Atomic Structure the wave nature of light 1 2 3 2 Hz 4 Hz 6 Hz 
THE ARGON ION LASER “The most noble of them all”
武汉物数所理论交叉学术交流系列报告 (第一三四期)
Frauke Schroeder and Edward R. Grant Department of Chemistry
Diagnostics for Metastable species and Electric
COOLING OF ELECTRICALLY-EXCITED He2 IN A MICROCAVITY PLASMA JET
High Harmonic Analysis Using a COLTRIMS Technique
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Presentation transcript:

State evolution in cold helium Rydberg gas Max-Born-Institut State evolution in cold helium Rydberg gas S. Gerlach1, R. Jung2, G. von Oppen2, U. Eichmann1,2 1 Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2A, D-12489 Berlin 2 Institut für Atomare Physik und Fachdidaktik, Technical University Berlin, D-10623 Berlin Overview Cold metastable helium Rydberg atoms – experimental setup Why helium ? H-like system with very small quantum defect for l>0 light atoms : new effects through different dynamics „condensation effect“ : fast ions act as condensation seed for cold metastable helium Investigation : cold helium Rydberg gas at low density Excitation below ionisation threshold with and without electric fields Study the redistribution of a (n,l) state as a function of time Nd-YAG Laser (30Hz system, 10ns pulses) Dye laser (+ frequency doubling) switched field plate fast photo detector (Trigger) MCP (ion/electron detection) Data acquisition Logics +Ufp ~10ms UV-puls Delay l = 260 nm l = 1083 nm He*- MOT Properties of Helium Energy level of metastable helium with excitation scheme 160000 170000 180000 1083 nm gas discharge 389 nm Energy [cm-1] 190000 200000 260 nm Continuum 33S 33P 23P 23S 11S frequency doubled pulsed Dye laser : Rydberg excitation + Ion creation frequency doubled TiSa-Laser : Lasercooling laser diode (1083 nm) : MOT Helium Rydberg spectra in electric fields Increasing electric field Increasing delay times delay = 10 µs Stark l-mixing electric field of 10 V/cm Lasercooling of metastable helium He*-source (gas discharge) MOT transversal cooling - “Stark-Slower” - cooling section laser diode  = 1083 nm 1 meter Parameter of the He* MOT: number of atoms : ~ 106 density : 108-109 cm-3 lifetime : up to 900 ms temperature : ca 1 mK Above field ionization threshold Below field ionization threshold short time scales : all states detected long time scales : only long-lived (high l) states survive Helium Stark manifold short time scales : only low stark-states (not l=0!) medium times : all states detected long times : high l states (long lifetime) no s-states at short times! time resolved level redistribution with a puls ramp n-state lifetimes lifetime up to 1.5 ms Increased up to n~60 Decreasing over n~70 because of ionization Theoretical occupation outlook clarify the role of the permanent dipole(p- vs. s-states) higher density cloud with more atoms investigate collisional effects : three body recombination “condensation” plasma effects (back and forth helium Rydberg plasma)