PQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage – associations to matrix composition.

Slides:



Advertisements
Similar presentations
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Advertisements

Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
2D and 3D MOCART scoring systems assessed by 9
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Diffusion of Gd-DTPA2− into articular cartilage
Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements 
Two year longitudinal change and test–retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative  F. Eckstein, M.D.,
J. Rautiainen, M. T. Nieminen, E. -N. Salo, H. T. Kokkonen, S
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
H.J. Smith, Ph.D., J.B. Richardson, M.D., A. Tennant, Ph.D. 
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
The groove model of osteoarthritis applied to the ovine fetlock joint
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice  S. Hashimoto, M.F. Rai, K.L.
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Cationic agent contrast-enhanced computed tomography imaging of cartilage correlates with the compressive modulus and coefficient of friction  B.A. Lakin,
Contrast Enhanced Computed Tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage  P.N. Bansal, N.S.
Macroscopic cartilage repair scoring of defect fill, integration and total points correlate with corresponding items in histological scoring systems –
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
Quantitative assessment of articular cartilage morphology via EPIC-μCT
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study  Elizabeth.
Women have thinner cartilage and smaller joint surfaces than men after adjustment for body height and weight  I.G. Otterness, Ph.D., F. Eckstein, M.D. 
Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.
Osteoarthritis year 2011 in review: biochemical markers of osteoarthritis: an overview of research and initiatives  Y. Henrotin  Osteoarthritis and Cartilage 
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties 
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
B. Bittersohl, F. R. Miese, H. S. Hosalkar, M. Herten, G. Antoch, R
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods  P. Podsiadlo, Ph.D., L.
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
S Saarakkala, B. Sc. , M. S Laasanen, M. Sc. , J. S Jurvelin, Ph. D
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
M. S. Laasanen, Ph. D. , J. Töyräs, Ph. D. , A. Vasara, M. D. , S
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis  J. Hirvasniemi, J. Thevenot, V. Immonen,
Quantitative MR T2 measurement of articular cartilage to assess the treatment effect of intra-articular hyaluronic acid injection on experimental osteoarthritis.
Evidence for articular cartilage regeneration in MRL/MpJ mice
Jun Li, M. D. , James M. Williams, Ph. D. , Zhong Zhong, Ph. D
Spectrocolorimetric evaluation of human articular cartilage
Articular damage caused by metal plugs in a rabbit model for treatment of localized cartilage defects  R.J.H. Custers, M.D., W.J.A. Dhert, M.D., Ph.D.,
Degeneration of patellar cartilage in patients with recurrent patellar dislocation following conservative treatment: evaluation with delayed gadolinium-enhanced.
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
A graphic user interface for the evaluation of knee osteoarthritis (GEKO): an open- source tool for histological grading  H.E. Kloefkorn, B.Y. Jacobs,
Measurement properties of the WOMAC LK 3.1 pain scale
K. Kuroki, C.R. Cook, J.L. Cook  Osteoarthritis and Cartilage 
Volumetric bone mineral density of the tibia is not increased in subjects with radiographic knee osteoarthritis  M. Abdin-Mohamed, M.B.B.S., M.R.C.P.,
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis  B.Y. Chan, E.S. Fuller, A.K. Russell, S.M. Smith, M.M. Smith,
Lower cervical spine facet cartilage thickness mapping
X. Li, Ph. D. , C. Benjamin Ma, M. D. , T. M. Link, M. D. , D. -D
Changes to the articular cartilage thickness profile of the tibia following anterior cruciate ligament injury  E.C. Argentieri, D.R. Sturnick, M.J. DeSarno,
Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage  J. Schooler, D. Kumar, L. Nardo, C. McCulloch,
C. S. Winalski, M. D. , S. Shortkroff, Ph. D. , E. Schneider, Ph. D
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B
Osteoarthritis year in review 2016: mechanics
M. E. Bowers, B. S. , N. Trinh, M. S. , G. A. Tung, M. D. , F. A. C. R
Presentation transcript:

pQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage – associations to matrix composition and integrity  T.S. Silvast, B.S., J.S. Jurvelin, Ph.D., M.J. Lammi, Ph.D., J. Töyräs, Ph.D.  Osteoarthritis and Cartilage  Volume 17, Issue 1, Pages 26-32 (January 2009) DOI: 10.1016/j.joca.2008.05.012 Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Sample preparation. Osteochondral cylinders (d=16mm) were drilled from human FMCs (n=12, cartilage thickness 2.13±0.54mm), and TMPs (n=12, cartilage thickness 1.99±0.38mm). Smaller osteochondral cylinders were punched for the contrast agent experiment and the pQCT measurements. Biochemical and histological analyses were conducted for the cartilage extracted from the remaining part of the 16mm cylinder. Osteoarthritis and Cartilage 2009 17, 26-32DOI: (10.1016/j.joca.2008.05.012) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Contrast agent concentration profile of human tibial cartilage after 4h of immersion in 21mM Hexabrix (Mankin score 2, water concentration 69%, and uronic acid concentration 4.8μg/mg). To minimise the partial volume effects on the contrast agent profile calculations the borderline pixels at cartilage surface and cartilage–bone interface were manually discarded. Osteoarthritis and Cartilage 2009 17, 26-32DOI: (10.1016/j.joca.2008.05.012) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Contrast agent diffusion into human articular cartilage. Although investigated osteochondral samples were small (diameter 4.0mm), the contrast agent diffusion into deep human articular cartilage took more than 12h. The cartilage thickness of this particular tibial osteochondral sample was 2.5mm (Mankin score 2, water concentration 69%, and uronic acid concentration 4.8μg/mg). Diffusion was possible from all directions, however, the diffusion through subchondral bone was insignificant. Time points from left to right: 0h (before immersion), 2h, 4h, 6h, 12h and 24h. Osteoarthritis and Cartilage 2009 17, 26-32DOI: (10.1016/j.joca.2008.05.012) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Vertical (perpendicular to cartilage surface) and horizontal (parallel to cartilage surface) contrast agent profiles as a function of immersion time (2–24h). Contrast agent diffusion took over 12h to reach the equilibrium distribution. Left above: area defined for the calculation of vertical contrast agent profile. Left below: area defined for the calculation of horizontal contrast agent profile. Right: vertical (above) and horizontal (below) mean contrast agent profiles in human TMP cartilage (Mankin score 1–9, n=12) recorded at various time points during immersion in contrast agent. Osteoarthritis and Cartilage 2009 17, 26-32DOI: (10.1016/j.joca.2008.05.012) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Representative pQCT image and contrast agent profile recorded before immersion (above), and after 24h of immersion (below) for tibial cartilage (Mankin score 3, water concentration 76%, and uronic acid concentration 5.4μg/mg). An increasing absorption profile could be seen in pQCT images acquired in 0h measurement. An inverse depthwise trend in X-ray absorbtion was revealed in images acquired after 24h of immersion. The correlation between these profiles was significant (r=−0.95, P=0.0000). Osteoarthritis and Cartilage 2009 17, 26-32DOI: (10.1016/j.joca.2008.05.012) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions