EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011

Slides:



Advertisements
Similar presentations
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter
Advertisements

L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 21 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
Professor Ronald L. Carter
8. 바이폴라 트랜지스터 (Bipolar Transistor)
BJT Static Characteristics
Lecture 25 OUTLINE The Bipolar Junction Transistor Introduction
Chapter 10 BJT Fundamentals. Chapter 10 BJT Fundamentals.
Chapter 4 Bipolar Junction Transistor
Professor Ronald L. Carter
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Professor Ronald L. Carter
Electron-hole pair generation due to light
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
Transistor/switch/amplifier – a 3 terminal device
Bipolar Junction Transistor (BJT) Chapter and 25 March 2016
BJT Static Characteristics
(calculation: see slides 20+ in EC)
Lecture #22 OUTLINE The Bipolar Junction Transistor
Lecture 26 OUTLINE The BJT (cont’d) Breakdown mechanisms
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture #25 OUTLINE BJT: Deviations from the Ideal
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Professor Ronald L. Carter
Lecture 24 OUTLINE The Bipolar Junction Transistor Introduction
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
Professor Ronald L. Carter
Semiconductor Device Physics
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2009
Professor Ronald L. Carter
Transistor/switch/amplifier – a 3 terminal device
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 25 OUTLINE The Bipolar Junction Transistor Introduction
Lecture 25 OUTLINE The BJT (cont’d) Ideal transistor analysis
Lecture 25 OUTLINE The BJT (cont’d) Ideal transistor analysis
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
BJT Static Characteristics
Professor Ronald L. Carter
Professor Ronald L. Carter
Chapter 4 Bipolar Junction Transistor
Bipolar Junction Transistor (BJT) Chapter and 17 March 2017
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 16 - Fall 2009
Professor Ronald L. Carter
Bipolar Junction Transistor (BJT) Chapter and 27 March 2019
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Professor Ronald L. Carter
Chapter 5 Bipolar Junction Transistors
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc

Test 2 – Tuesday 05Apr11 11 AM Room 129 ERB Covering Lectures 11 to19 Open book - 1 legal text or ref., only. You may write notes in your book. Calculator allowed A cover sheet will be included with full instructions. For examples see http://www.uta.edu/ronc/5340/tests/. ©rlc L18-29Mar2011

©rlc L18-29Mar2011

©rlc L18-29Mar2011

Ideal diode equation for EgN = EgN Js = Js,p + Js,n = hole curr + ele curr Js,p = qni2Dp coth(Wn/Lp)/(NdLp), [cath.] = qni2Dp/(NdWn), Wn << Lp, “short” = qni2Dp/(NdLp), Wn >> Lp, “long” Js,n = qni2Dn coth(Wp/Ln)/(NaLn), [anode] = qni2Dn/(NaWp), Wp << Ln, “short” = qni2Dn/(NaLn), Wp >> Ln, “long” Js,n<<Js,p when Na>>Nd , Wn & Wp cnr wdth ©rlc L18-29Mar2011

Ideal diode equation for heterojunction Js = Js,p + Js,n = hole curr + ele curr Js,p = qniN2Dp/[NdLptanh(WN/Lp)], [cath.] = qniN2Dp/[NdWN], WN << Lp, “short” = qniN2Dp/(NdLp), WN >> Lp, “long” Js,n = qniP2Dn/[NaLntanh(WP/Ln)], [anode] = qniP2Dn/(NaWp), Wp << Ln, “short” = qniP2Dn/(NaLn), Wp >> Ln, “long” Js,p/Js,n ~ niN2/niP2 ~ exp[[EgP-EgN]/kT] ©rlc L18-29Mar2011

Bipolar junction transistor (BJT) E B C VEB VCB Charge neutral Region Depletion Region The BJT is a “Si sandwich” Pnp (P=p+,p=p-) or Npn (N=n+, n=n-) BJT action: npn Forward Active when VBE > 0 and VBC < 0 ©rlc L18-29Mar2011

npn BJT topology x x’ p-Base n-Collector N-Emitter z WB WB+WC -WE x”c Charge Neutral Region Depletion Region x x’ p-Base n-Collector N-Emitter z WB WB+WC -WE x”c x” xB x’E IE IC IB ©rlc L18-29Mar2011

BJT boundary and injection cond (npn) ©rlc L18-29Mar2011

BJT boundary and injection cond (npn) ©rlc L18-29Mar2011

IC npn BJT (*Fig 9.2a) ©rlc L18-29Mar2011

npn BJT bands in FA region q(VbiE-VBE ) q(VbiC-VBC ) qVBE qVBC injection high field ©rlc L18-29Mar2011

Coordinate system - prototype npn BJT (Fig 9.8*) ©rlc L18-29Mar2011

Notation for npn & pnp BJTs NE, NB, NC E, B, and C doping (maj) xE, xB, xC E, B, and C CNR widths DE, DB, DC Dminority for E, B, and C LE, LB, LC Lminority for E, B, and C (L2min = Dmin tmin) tE0, tB0, tC0 minority carrier life- times for E, B, and C regions ©rlc L18-29Mar2011

Notation for npn BJTs only pEO, nBO, pCO: E, B, and C thermal equilibrium minority carrier conc pE(x’), nB(x), pC(x’’): positional mathe- matical function for the E, B, and C total minority carrier concentrations dpE(x’), dnB(x), dpC(x’’): positional ma- thematical function for the excess minority carriers in the E, B, and C ©rlc L18-29Mar2011

Notation for pnp BJTs only nEO, pBO, nCO: E, B, and C thermal equilibrium minority carrier conc nE(x’), pB(x), nC (x’’): positional mathe- matical function for the E, B, and C total minority carrier concentrations dnE(x’), dpB(x), dnC(x’’): positional ma- thematical function for the excess minority carriers in the E, B, and C ©rlc L18-29Mar2011

npn BJT boundary conditions ©rlc L18-29Mar2011

Emitter solution in npn BJT ©rlc L18-29Mar2011

Base solution in npn BJT ©rlc L18-29Mar2011

Collector solution in npn BJT ©rlc L18-29Mar2011

Hyperbolic tangent function ©rlc L18-29Mar2011

npn BJT regions of operation VBC Reverse Active Saturation VBE Forward Active Cutoff ©rlc L18-29Mar2011

npn FA BJT minority carrier distribution (Fig 9.4*) ©rlc L18-29Mar2011

npn RA BJT minority carrier distribution (Fig 9.11a*) ©rlc L18-29Mar2011

npn cutoff BJT min carrier distribution (Fig 9.10a*) ©rlc L18-29Mar2011

npn sat BJT minority carrier distribution (Fig 9.10b*) ©rlc L18-29Mar2011

npn BJT currents in the forward active region ©RLC IC = JCAC IB=-(IE+IC ) JnE JnC IE = -JEAE JRB=JnE-JnC JpE JGC JRE JpC ©rlc L18-29Mar2011

References * Semiconductor Physics and Devices, 2nd ed., by Neamen, Irwin, Boston, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Muller and Kamins, John Wiley, New York, 1986. ©rlc L18-29Mar2011