Dr. Hugh Blanton ENTC 4307/ENTC 5307

Slides:



Advertisements
Similar presentations
ELCT564 Spring /13/20151ELCT564 Chapter 5: Impedance Matching and Tuning.
Advertisements

ENE 428 Microwave Engineering
Chapter 13 Transmission Lines
1 S Parameters and Power gains  Training in 1 day Roberto Antonicelli ST Belgium, Network Division.
EKT241 – ELECTROMAGNETICS THEORY
Chapter Fourteen: Transmission Lines
Han Q Le© ECE 3336 Introduction to Circuits & Electronics Lecture Set #10 Signal Analysis & Processing – Frequency Response & Filters Dr. Han Le ECE Dept.
UNIVERSITI MALAYSIA PERLIS
UNIVERSITI MALAYSIA PERLIS
ELCT564 Spring /9/20151ELCT564 Chapter 2: Transmission Line Theory.
Chapter 2: Transmission Line Theory
EE322 Digital Communications
1 Dr. Uri Mahlab. INTRODUCTION In order to transmit digital information over * bandpass channels, we have to transfer the information to a carrier wave.
ENEE482-Dr. Zaki1 Impedance Matching with Lumped Elements YLYL jX 1 jB 2.
Lecture 9 Last lecture Parameter equations input impedance.
Electromagnetics (ENGR 367) The Complete Sourced & Loaded T-line.
RF and Microwave Basics
Matched Filters By: Andy Wang.
ELEC 303 – Random Signals Lecture 21 – Random processes
Chapter 5: Impedance Matching and Tuning
Probability Theory and Random Processes
Impedance Matching and Tuning
EKT 441 MICROWAVE COMMUNICATIONS
1 Let g(t) be periodic; period = T o. Fundamental frequency = f o = 1/ T o Hz or  o = 2  / T o rad/sec. Harmonics =n f o, n =2,3 4,... Trigonometric.
COSC 4214: Digital Communications Instructor: Dr. Amir Asif Department of Computer Science and Engineering York University Handout # 2: Random Signals.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
5. Impedance Matching and Tuning
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
IMPEDANCE MATCHING IN HIGH FREQUENCY LINES UNIT - III.
CHAPTER 4 TRANSMISSION LINES.
12 Transmission Lines.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
Lecture 9 Smith Chart Normalized admittance z and y are directly opposite each other on.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
Yi HUANG Department of Electrical Engineering & Electronics
COSC 4214: Digital Communications Instructor: Dr. Amir Asif Department of Computer Science and Engineering York University Handout # 3: Baseband Modulation.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
revision Transfer function. Frequency Response
Baseband Receiver Receiver Design: Demodulation Matched Filter Correlator Receiver Detection Max. Likelihood Detector Probability of Error.
ENE 490 Applied Communication Systems
Eeng360 1 Chapter 2 Linear Systems Topics:  Review of Linear Systems Linear Time-Invariant Systems Impulse Response Transfer Functions Distortionless.
Antenna Matching Techniques
ELEC 401 MICROWAVE ELECTRONICS Lecture on Matching
Applied EM by Ulaby, Michielssen and Ravaioli
Chapter 10. Transmission lines
Subject Name: Microwave and Radar Subject Code: 10EC54
Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband.
Lecture 1.30 Structure of the optimal receiver deterministic signals.
ELEC 401 MICROWAVE ELECTRONICS Lecture on Smith Chart
Non-ideal property – crosstalk
Fourier Transform Analysis of Signals and Systems
topics Basic Transmission Line Equations
ELEC 401 MICROWAVE ELECTRONICS Lecture on Smith Chart
Lecturer: Professor Jean-Fu Kiang
Smith Chart Parametric Equations
Transmission lines II 1.
IMPEDANCE MATCHING & SMITH CHART
Supplemental Information Fields and Waves I ECSE 2100
Microwave Engineering
Notes 13 Transmission Lines (Impedance Matching)
Notes 11 Transmission Lines
Notes 10 Transmission Lines (Reflection and Impedance)
Voltage Reflection Coefficient
Telecommunications Dr. Hugh Blanton ENTC 4307.
Understanding Network Analysis
N-port Network Port reference Line Impedance Port Voltage & Current.
4th Week Seminar Sunryul Kim Antennas & RF Devices Lab.
ENE 428 Microwave Engineering
Presentation transcript:

Dr. Hugh Blanton ENTC 4307/ENTC 5307 TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307

Solutions to Test 1

1. Definitions RF—Implies the frequencies where the wavelength, l, becomes equal or smaller than the physical components in the circuits. Continuous—A signal which can take an infinite number of different values between a minimum and a maximum. Dr. Blanton - ENTC 4307 - Solution_Test_1 3

Discrete—A signal which can take only a finite number of different value. Wireless—A term used to describe telecommunications in which electromagnetic waves (rather than some form of wire) carry the signal over part or all of the communication path. Dr. Blanton - ENTC 4307 - Solution_Test_1 4

Random—A rule that assigns one and only one numerical value to each sample point in a random experiment. Deterministic—A model where a set inputs always produce the same outputs. Dr. Blanton - ENTC 4307 - Solution_Test_1 5

2. Complex Numbers a. Express z1 and z2 in polar form. b. Find | z1 | and | z2 | and calculate the product z1  z2 and the ratio z1 / z2 in polar form. Dr. Blanton - ENTC 4307 - Solution_Test_1 6

3. RF The presence of the transmission line can be ignored when: a. l = 0.1 m, f = 1 GHz transmission line cannot be ignored! b. l = 1 m, f = 1.8 GHz transmission line cannot be ignored! Dr. Blanton - ENTC 4307 - Solution_Test_1 7

3. RF c. l = 0.01 m, f = 0.9 GHz transmission line cannot be ignored! d. l = 5 cm, f = 5.4 GHz transmission line cannot be ignored! Dr. Blanton - ENTC 4307 - Solution_Test_1 8

4. Smith Chart a. Reflection coefficient (G): b. Standing wave ratio (SWR): c. Input impedance (ZIN): Dr. Blanton - ENTC 4307 - Solution_Test_1 9

4. Smith Chart d. Input admittance (YIN): e. Shortest line length Dr. Blanton - ENTC 4307 - Solution_Test_1 10

4. Smith Chart 0.144l 0.494l Dr. Blanton - ENTC 4307 - Solution_Test_1 11

5. Stub Tuning Dr. Blanton - ENTC 4307 - Solution_Test_1 12

6. Uniform Distribution Dr. Blanton - ENTC 4307 - Solution_Test_1 13

7. PDF Dr. Blanton - ENTC 4307 - Solution_Test_1 14 pX(x) x ½ ⅜ ⅛ 1 2

8. Signal r(t) = s(t) + n(t) s(t) = 5 cos(2p x 1000t )+ 10cos (2p x 1100t) noise n(t) is white noise with power No = 0.05 watt/Hz passband between 990 Hz and 1100 Hz Dr. Blanton - ENTC 4307 - Solution_Test_1 15

9. RC The output power spectral density is the input density multiplied by the square of the magnitude of the transfer function: Note the Fourier transform pair: x(t) R C Dr. Blanton - ENTC 4307 - Solution_Test_1 16

Dr. Blanton - ENTC 4307 - Solution_Test_1 17

Dr. Blanton - ENTC 4307 - Solution_Test_1 18

10. Ideal Filter Dr. Blanton - ENTC 4307 - Solution_Test_1 19 H(f) f fm -fm 1 Dr. Blanton - ENTC 4307 - Solution_Test_1 19