Division Accélérateurs

Slides:



Advertisements
Similar presentations
Paris, November 2004 M. Lewitowicz NuPECC meeting Physics case of SPIRAL 2 and EURISOL SPIRAL2 and EURISOL facilities Available Beams Physics Case Conclusions.
Advertisements

The Physics of Nuclei, Nuclear Matter and Nucleosynthesis Report of the Nuclear Physics Advisory Panel.
SYNTHESIS OF SUPER HEAVY ELEMENTS
Coulomb excitation with radioactive ion beams
SUPERCONDUCTING RF (SRF) SYSTEMS Peter McIntosh (STFC) Accelerator-driven Production of Medical Isotopes 8 th – 9 th December
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
Alpha decay parent nucleus daughter nucleus Momentum conservation decides how the energy is distributed. r E 30 MeV 5 MeV.
S. Sidorchuk (JINR, Dubna) Dubna Radioacive Ion Beams DRIBsIII: STATUS and PROSPECTS S. Sidorchuk (JINR, Dubna) 9-16 May 2013, Varna, Bulgaria 1.
Nuclear / Subatomic Physics Physics – Chapter 25 (Holt)
Outlook towards future Polish participation in the new Accelerator Facility Tomasz Matulewicz Warsaw University.
Alex C. MUELLER Physics with a multi-MW proton source, CERN, Geneva, May Additional Installations for a Nuclear Physics Facility Alex C. MUELLER.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Accelerator technique FYSN 430 Fall Syllabus Task: determine all possible parameters for a new accelerator project Known: Scope of physics done.
INTRODUCTION SPALLATION REACTIONS F/B ASYMMETRY FOR Au+p RANKING OF SPALLATION MODELS SUMMARY Title 24/09/2014 Sushil K. Sharma Proton induced spallation.
Stopping Power The linear stopping power S for charged particles in a given absorber is simply defined as the differential energy loss for that particle.
A facility for Nuclear, Atomic, Material and Radiobiology Sciences. Delivering stable (from C to U) and radioactive ions (from He to Xe) in the energy.
March 2011Particle and Nuclear Physics,1 Experimental tools accelerators particle interactions with matter detectors.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
Page 1NANUF03 - Bucharest - September Optimisation of UCx targets for fission induced by fast neutrons or electrons. Optimisation of UCx targets.
CERN NuPAC meeting Dec 2005 The future of ISOLDE: accelerated radioactive beams Peter Butler 1.HIE-ISOLDE 2.EURISOL.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
10-Year Vision: expanded RIB program with: three simultaneous beams increased number of hours delivered per year new beam species increased.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Nuclear Reactions Sample.
Nuclear Reactions - II A. Nucleon-Nucleus Reactions A.1 Spallation
-NUCLEUS INTERACTIONS OPEN QUESTIONS and FUTURE PROJECTS Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
Radioactive ion beam production at other facilities
European Isotope Separation On-Line Radioactive Nuclear Beam Facility A preliminary design study of the next- generation European ISOL RNB facility GANIL,
Accelerator Physics, JU, First Semester, (Saed Dababneh). 1 Electron pick-up. ~1/E What about fission fragments????? Bragg curve stochastic energy.
The FAIR* Project *Facility for Antiproton and Ion Research Outline:  FAIR layout  Research programs Peter Senger, GSI USTC Hefei Nov. 21, 2006 and CCNU.
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
Experimental Studies of Spatial Distributions of Neutrons Produced by Set-ups with Thick Lead Target Irradiated by Relativistic Protons Vladimír Wagner.
Coseners meeting Sept Future of European ISOL Peter Butler.
Total photoabsorption on quasi free nucleons at 600 – 1500 MeV N.Rudnev, A.Ignatov, A.Lapik, A.Mushkarenkov, V.Nedorezov, A.Turinge for the GRAAL collaboratiion.
UK Research in Nuclear Physics P J Nolan University of Liverpool.
3/2003 Rev 1 I.2.0 – slide 1 of 12 Session I.2.0 Part I Review of Fundamentals Module 2Introduction Session 0Part I Table of Contents IAEA Post Graduate.
SECONDARY-BEAM PRODUCTION: PROTONS VERSUS HEAVY IONS A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany  Present knowledge on.
Antonio C.C. Villari - GANILMoriond-2003 Radioactive beam research notches up 50 years Otto Kofoed-Hansen and Karl Ove Nielsen were the authors of NBI's.
Simultaneous photo-production measurement of the  and  mesons on the nucleons at the range 680 – 1500 MeV N.Rudnev, V.Nedorezov, A.Turinge for the GRAAL.
Summary: Physics Opportunities for ISOLDE and n_TOF Peter Butler.
Transmutation of 129 I with high energy neutrons produced in spallation reactions induced by protons in massive target V.HENZL Nuclear Physics Institute.
Comprehensive investigation of the decay losses in the ISOL extraction method KP2 Seminar, Strahinja Lukić.
EURISOL: European Collaboration towards the ultimate ISOL facility Yorick Blumenfeld IPN – Orsay We acknowledge the financial support of the European Community.
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
Announcements Practice Final now posted.
Nuclear Physics -- Today and Tomorrow From the infinitely strong –
for the EURISOL Steering Committee
SMI-06 Workshop, Groningen,
the s process: messages from stellar He burning
A “standard” ISOLDE target: ThO2-184, n-rich Cu
Fusion reactions with light stable and neutron-rich nuclei:
Targets & conversion to secondary radiation summary
Nuclear Physics in France
BEAM INTENSITIES WITH EURISOL
Seminar on Radio Active Ion Beam
Mitja Majerle NPI CAS Řež, Czech Republic
Nuclear Stability Nuclear Changes
Unit 11 - Nuclear Chemistry
European Spallation Neutron Source ESNS
Chapter 13 Nuclear Chemistry.
Unit 3: Part 2 of the Atom Nuclear Chemistry
Unit 11 - Nuclear Chemistry
Performed experiments Nuclotron – set up ENERGY PLUS TRANSMUTATION
Institut de Physique Nucléaire Orsay, France
Joint session – Beta-beams
Production Cross-Sections of Radionuclides in Proton- and Heavy Ion-Induced Reactions Strahinja Lukić.
Nuclear Chemistry The energy of life.
Atomic Structure.
Nuclear Radiation.
Presentation transcript:

Division Accélérateurs Radioactive Beam Production by Photofission Alex C. Mueller, Accelerator Division, IPN ORSAY, CNRS/IN2P3 (Seminar at the CERN PS-Division, June 13, 2001) Division Accélérateurs Introduction Scientific Motivation Making Radioactive Beams Considerations on the Intensities X-sections for Fission Fragments The PARRNe R&D Programme PARRNe-1 at the LEP-injector Experimental Results Concluding Outlook Alex C. Mueller, CERN PS-Div., June 2001, T 1

Division Accélérateurs Nuclei far from stability key objects in for the nucleosynthesis in the universe Division Accélérateurs Nova explosion proton-rich nuclei Supernova explosion neutron-rich nuclei Gravitational collapse of a massive star to a neutron star "neutron-matter" simulating systems Alex C. Mueller, CERN PS-Div., June 2001, T 2

Division Accélérateurs Nuclear Forces and the Nuclear Many-Body Problem Division Accélérateurs The view of the Polish/US theoretical nuclear physicist Witold Nazarewicz: light nuclei light nuclei medium-mass medium-mass Radioactive Beam Facilities and heavy nuclei and heavy nuclei nucleon nucleon effective effective NN force NN force ALICE @LHC free NN free NN force force Derivation of the effective NN force Derivation of the in nuclear medium quarks & gluons quarks & gluons bare NN force CEBAF, ELFE from QCD Alex C. Mueller, CERN PS-Div., June 2001, T 3

Chemistry and Physics of the heaviest elements Division Accélérateurs The colors in the figure below correspond to the binding energy ("shell stabilization), hence to the life time. In the dark blue region the lifetime may reach years or more. Fusion Reactions with neutron-rich beams, like 132Sn, might give acces to this region Alex C. Mueller, CERN PS-Div., June 2001, T 4

Radioactive Beams also have a number of Applications (examples from CERN-ISOLDE Webpage) Division Accélérateurs Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 5

Division Accélérateurs The Two Production Methods for Radioactive Beams and their combination, "RIA" proposed in the US Division Accélérateurs "In-Flight" RIA, combining ISOL & In-Flight ISOL = Isotopic Separation On-Line Alex C. Mueller, CERN PS-Div., June 2001, T 6

An ISOL facility including post- acceleration: SPIRAL phase I Division Accélérateurs - Driver (GANIL cyclotrons) - Target-ion source system - Post-accelerator cyclotron CIME - I up to 109 pps - Mass range: up to A=100 Into operation by summer 2001 Alex C. Mueller, CERN PS-Div., June 2001, T 7

Secondary radioactive beam intensities Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 8

An example for nuclear reaction cross sections (fission) Division Accélérateurs (Calculations: Ridikas, ENAM 98) Alex C. Mueller, CERN PS-Div., June 2001, T 9

Optimising the Production Division Accélérateurs In-Flight : get F large  high-power accelerator R&D get N large  high-energy > 1 GeV get e4 large  high-energy > 1 GeV ISOL : get F large  high-power accelerator R&D get e1e2e3 large  R&D on target and ion-sources, like PARRNe Alex C. Mueller, CERN PS-Div., June 2001, T 10

Limits of the ISOL technique: power deposit in the target Division Accélérateurs Pic de Bragg distance de parcours dans la cible dE/dx Inconvénient des faisceaux intenses de particules chargés : ralentissement des particules  dépôt d’énergie localisée en fin de parcours (pic de Bragg) Utilisation des neutrons : toute l’énergie incidente est dissipée dans la réaction nucléaire Neutrons rapides :  238U utilisable Neutrons thermiques :  réacteur nucléaire  235U Alex C. Mueller, CERN PS-Div., June 2001, T 11

ISOL at the highest power levels Division Accélérateurs One stage : direct use of charged particles, minimize dE/dx (low Z, high E at 1 GeV max. 100 - 200 kW Two stage : use neutral particles in second stage, i.e. neutrons & photons for neutrons 5 MW of proton beam (like spallation source) RIA (fragmentation + gas collec- tion scheme) is also in this class Alex C. Mueller, CERN PS-Div., June 2001, T 12

Original Motivation for Spiral-II Division Accélérateurs A new driver: d (60 - 200 MeV) with high intensity I = 50 - 200 mA Dedicated cyclotron or GANIL SSC fission induced by neutrons Fission products accelerated in CIME cyclotron 90Kr, 132Sn I > 101O pps Alex C. Mueller, CERN PS-Div., June 2001, T 13

High Intensity Linacs for future ISOL Facilities Division Accélérateurs "Generic" lay-out for the EURISOL project note similarity with other projected linacs n factory (CERN SPL) nuclear waste trans- mutation Neutron Spallation Source (SNS, ESS) Material Irradiation Target R&D needed, justification of the PARRNE programme for fission fragment production Alex C. Mueller, CERN PS-Div., June 2001, T 14

PARRNe-1 (European RTD: IPN-Jyväskylä-Louvain-GANIL-KVI) Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 15

PARRNe-2 at the Orsay Tandem Division Accélérateurs Targets UCx Molten U + Sources Nier Bernas Isolde MK5 Alex C. Mueller, CERN PS-Div., June 2001, T 16

Elements already produced with PARRNe-2 (>100 isotopes) Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 17

Present Rates with PARRNe-2 (here upper fission hump) Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 18

Photo-fission: the idea and involved processes Division Accélérateurs Convertisseur Cible 238UCx  e- Photo-electric effect Diffusion (Compton, Raleigh) Pair Production (e+e-) Nuclear Reactions (, f) GDR (Giant Dipolar Resonance) (, n) (, 2n) Bremsstrahlung Ionisation excitation Alex C. Mueller, CERN PS-Div., June 2001, T 19

Production of photons by Bremsstrahlung and X-section for photofission Division Accélérateurs e- g a 2-3o Data compiled by Yu.Ts. Oganessian JINR-E7-2000-83 Fission probability: 0.6%/e @ 50 MeV! . Alex C. Mueller, CERN PS-Div., June 2001, T 20

Distribution of the produced nuclei in Photofission Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 21

The set-up of the CERN experiment Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 22

Location of the converter and the target Alex C. Mueller, CERN PS-Div., June 2001, T 28

The experiment: cryogenic collection and data acquisition Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 24

Division Accélérateurs A typical g-spectrum from the radioactive decay from the collected fission fragments Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 25

Results @ CERN and comparison with fast-neutron data Division Accélérateurs Without Conv. KVI 80 MeV D 4 cm Conv. 8 cm Converter Alex C. Mueller, CERN PS-Div., June 2001, T 26

Inspection of the target after irradiation Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 27

SPIRAL-II and other projects Division Accélérateurs Dubna: DRIBS project, under construction Chalk River: theoretical Study by W.T. Diamond SPIRAL-II: here with photofission Alex C. Mueller, CERN PS-Div., June 2001, T 28

Division Accélérateurs Perspectives Division Accélérateurs Complete R&D Programme with the LPI front-end and PARRNe-2 SPIRAL-2 (Scientific&Technical Proposal presently under evaluation The "ultimate" EURISOL electron driver Figure 3  20 m long Alex C. Mueller, CERN PS-Div., June 2001, T 29

Spallation vs. Photofission from Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 30

Conclusion of the first part… Division Accélérateurs Alex C. Mueller, CERN PS-Div., June 2001, T 31