CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM

Slides:



Advertisements
Similar presentations
68th OSU International Symposium on Molecular Spectroscopy TH08
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
IDENTIFICATION OF THE CAGE, PRISM, AND BOOK ISOMERS OF WATER HEXAMER AND THE PREDICTED LOWEST ENERGY HEPTAMER AND NONAMER CLUSTERS BY BROADBAND ROTATIONAL.
Techniques for High-Bandwidth (> 30 GHz) Chirped-Pulse Millimeter/Submillimeter Spectroscopy Justin L. Neill, Amanda L. Steber, Brent J. Harris, Brooks.
Gas Analysis by Fourier Transform Millimeter Wave Spectroscopy Brent J. Harris, Amanda L. Steber, Kevin K. Lehmann, and Brooks H. Pate Department of Chemistry.
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
A Segmented Chirped-Pulse Fourier Transform Millimeter Wave Spectrometer ( GHz) with Real-time Signal Averaging Capability Brent J. Harris, Amanda.
Waveguide Chirped-Pulse FTMW Spectroscopy Steven T. Shipman, 1 Justin L. Neill, 1 Brett Kroncke, 1 Brooks H. Pate, 1 and P. Groner 2 1 University of Virginia.
DELIVERING MICROWAVE SPECTROSCOPY TO THE MASSES: A DESIGN OF A LOW-COST MICROWAVE SPECTROMETER OPERATING IN THE GHZ FREQUENCY RANGE Amanda L. Steber.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
Broadband Rotational Spectroscopy Raymond C. Ferguson interview for the Beckman Center for the History of Chemistry Brooks H. Pate Department of Chemistry.
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Chirped-Pulse Fourier Transform mm-Wave Spectroscopy from GHz Brent J. Harris, Amanda L. Steber, Justin L. Neill *, Brooks H. Pate University of.
Kelly Hotopp June 22, 2010 Purdue University.  Demonstration of 2D CP-FTMW spectroscopy ◦ Non-Selective Excitation ◦ Selective Excitation  2D CP-FTMW.
Water clusters observed by chirped-pulse rotational spectroscopy: Structures and hydrogen bonding Cristobal Perez, Matt T. Muckle, Daniel P. Zaleski, Nathan.
Structures of the cage, prism and book hexamer water clusters from multiple isotopic substitution Simon Lobsiger, Cristobal Perez, Daniel P. Zaleski, Nathan.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
OSU 06/18/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Daniel P. Zaleski, Hansjochen Köckert, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne,
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Deuterated water hexamer observed by chirped-pulse rotational spectroscopy International Symposium on Molecular Spectroscopy, 69 th Meeting Champaign-Urbana,
Amanda L. Steber, Brent J. Harris, Justin L. Neill, Kevin K. Lehmann, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Non-ideal Cavity Ring-Down Spectroscopy: Linear Birefringence, Linear Polarization Dependent Loss of Supermirrors, and Finite Extinction Ratio of Light.
An Improved Analysis of the Sevoflurane ⋯ Benzene Structure by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin L. Neill,
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Enantiomer Identification in Chiral Mixtures with Broadband Microwave Spectroscopy V. Alvin Shubert a, David Schmitz a, Chris Medcraft a, Anna Krin a,
Fast Sweeping Direct Absorption (sub)Millimeter Spectroscopy Based on Chirped Pulse Technology Brian Hays 1, Steve Shipman 2, Susanna Widicus Weaver 1.
Millimeter Wave Spectroscopy of Rydberg States of Molecules in the Region of GHz David Grimes, Yan Zhou, Timothy Barnum, Robert Field Department.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Microwave Spectra of cis-1,3,5- Hexatriene and Its 13 C Isotopomers; An r s Substitution Structure for the Carbon Backbone Richard D. Suenram, Brooks H.
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
Digital Control System for Microwave Spectroscopy Data Collection Amanda Olmut Dr. Stephen Kukolich, Principle Investigator Dr. Adam Daly, Project Lead.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
Applications of Molecular Rotational Spectroscopy for Chiral Analysis Rotational Spectrum and Carbon Atom Structure of Dihydroartemisinic Acid Luca Evangelistsi,
Nathan Seifert, Wolfgang Jäger University of Alberta
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
AMANDA L. STEBER, MARIYAM FATIMA, CRISTÓBAL PÉREZ, and MELANIE SCHNELL
A CHIRAL TAGGING STRATEGY FOR DETERMINING ABSOLUTE CONFIGURATION AND ENANTIOMERIC EXCESS BY MOLECULAR ROTATIONAL SPECTROSCOPY Luca Evangelisti and Walther.
IN THE GAS PHASE AND IN SOLUTION
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Substitution Structures of Large Molecules and Medium Range Correlations in Quantum Chemistry Calculations Luca Evangelisti Dipartmento di Chimica “Giacomo.
Mingyun Li & Kevin Lehmann Department of Chemistry and Physics
Complexes of Small Chiral Molecules: Propylene Oxide and 3-Butyn-2-ol
Absolute Configuration of 3-methylcyclohexanone by Chiral Tag Rotational Spectroscopy and Vibrational Circular Dichroism Luca Evangelisti, Dipartimento.
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
International Symposium on Molecular Spectroscopy, 71st Meeting
Characterisation and Control of Cold Chiral Compounds
CHIRAL TAGGING OF VERBENONE WITH 3-BUTYN-2-OL FOR ESTABLISHING ABSOLUTE CONFIGURATION AND DETERMINING ENANTIOMERIC EXCESS Kevin Mayer, Martin Holdren,
Carlos Cabezas and Yasuki Endo
L. Evangelisti,a,c C. Perez,b,c B.H. Patec
A Chiral Tag Study of the Absolute Configuration of Camphor
Theory of microwave 3-Wave mixing of chiral molecules
The CP-FTMW Spectrum of Verbenone
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO
THE STRUCTURE OF PHENYLGLYCINOL
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Presentation transcript:

CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM MOLECULAR STRUCTURE AND CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM MICROWAVE SPECTROSCOPY SIMON LOBSIGER, CRISTOBAL PEREZ, LUCA EVANGELISTI, NATHAN A. SEIFERT, BROOKS H. PATE, KEVIN K. LEHMANN Department of Chemistry, University of Virginia

Background Mirror reflection: sign of mambmc changes E. Hirota, Proc. Jpn. Acad., Sec B, 2012, 88, 120. Background D. Patterson, M. Schnell and J. M. Doyle, Nature, 2013, 497, 475 D. Patterson and J. M. Doyle, Phys. Rev. Lett., 2013, 111, 023008 Mirror reflection: sign of mambmc changes Cycle of three dipole-allowed transitions (a-, b- and c-type) between rotational states: Three-wave mixing experiment Two orthogonally polarized resonant fileds  third mutually orthogonal field encoding the chiral signal and shift 180 degrees between enantiomers

Three Wave Mixing 2 11 2 02 1 01 Coherence Transfer 𝜋 pulse Coherence J.-U. Grabow, Angew. Chem. Int. Ed., 2013, 52, 11698 Three Wave Mixing K. K. Lehmann, unpublished X Z Y Coherence Transfer 𝜋 pulse Ψ = 𝑐 1 (t) 1 01 + 𝑐 2 (𝑡) 2 11 + 𝑐 3 (𝑡) 2 02 2 11 Coherence 2 02 𝜋 2 pulse Ψ = 𝑐 1 (t) 1 01 + 𝑐 2 (𝑡) 2 11 Chiral Signal 1 01 Θ 𝑅𝑎𝑏𝑖 = 𝜔 𝑅𝑎𝑏𝑖 ∙ 𝑡 𝑝𝑢𝑙𝑠𝑒 = − 𝜇∙𝐸 ℏ ∙ 𝑡 𝑝𝑢𝑙𝑠𝑒 𝑃 𝑋 ∼𝝁 𝒂 𝝁 𝒃 𝝁 𝒄 1 01 Φ 𝑋𝑧 2 02 2 02 Φ 𝑌𝑥 2 11 2 11 Φ 𝑍𝑦 1 01 Considerations: -Signal a DP of p/2 pulse -Signal a [nChiral Signal][mChiral Signal] -Q-Branch involved (low frequency)

Experimental setup X Z Y Z Y X

R S Solketal 𝝁 𝒂 -1.8 D 1.8 D 𝝁 𝒃 1.2 D 1.2 D 𝝁 𝒄 -0.2 D -0.2 D m06-2x/6-311++g(d,p) A = 2756 MHz B = 1248 MHz C = 1088 MHz 𝝁 𝒂 -1.8 D 1.8 D 𝝁 𝒃 1.2 D 1.2 D 𝝁 𝒄 -0.2 D -0.2 D 𝝁 𝒂 𝝁 𝒃 𝝁 𝒄 + -

Broadband spectrum 2-8 GHz Measured Noise Level: 0.4 mV 400,000 Averages a-type (4604 MHz) b-type (1839 MHz) c-type (6443 MHz) 1.5K Simulation of Solketal Rotational Spectrum Fit Substitution Structure from 13C and 18O Isotopic Analysis (Natural Abundance) m06-2x/6-311++g(d,p) mp2/6-311++g(d,p) * Cristóbal Pérez, Simon Lobsiger, Nathan A. Seifert, Daniel P. Zaleski, Berhane Temelso, George C. Shields, Zbigniew Kisiel, and Brooks H. Pate, “Broadband Fourier Transform Rotational Spectroscopy for Structure Determination: The Water Heptamer (Frontiers Article)”, Chem. Phys. Lett. 571, 1-15 (2013).

Experimental Design & Implementation 2 11 2 02 𝜋 pulse 𝜋 2 pulse b-type (1839 MHz) a-type (4604 MHz) 1 01 c-type (6443 MHz) R-Branch weakest dipole moment MW power DP Detection in the strongest 𝜋 pulse Second weakest (Q-Branch)

Rabi Excitation Characteristics 𝜇 𝑎 = 1.8 D 𝜇 𝑏 = 1.2 D 𝜇 𝑐 = 0.2 D 𝜋 2 pulse Θ 𝑅𝑎𝑏𝑖 = 𝜔 𝑅𝑎𝑏𝑖 ∙ 𝑡 𝑝𝑢𝑙𝑠𝑒 = − 𝜇∙𝐸 ℏ ∙ 𝑡 𝑝𝑢𝑙𝑠𝑒

Rabi Excitation Characteristics 𝜇 𝑎 = 1.8 D 𝜇 𝑏 = 1.2 D 𝜇 𝑐 = 0.2 D 𝜋 pulse Θ 𝑅𝑎𝑏𝑖 = 𝜔 𝑅𝑎𝑏𝑖 ∙ 𝑡 𝑝𝑢𝑙𝑠𝑒 = − 𝜇∙𝐸 ℏ ∙ 𝑡 𝑝𝑢𝑙𝑠𝑒

Spectrum of Chiral Signal 2 11 2 02 𝜋 pulse 𝜋 2 pulse b-type (1839 MHz) a-type (4604 MHz) 1 01 c-type (6443 MHz) Directly Digitized 50Gs/s Filtered Frequencies

Enantiomer Dependent Phase 11

Carvone: New conformer EQ3 Absolute Phase Measurements Solketal Carvone: New conformer EQ3 Others EQ2 EQ1 EQ3

Conclusions Easy to implement at higher frequency Three wave mixing: Time separated pulses tested successfully Best Implementation: Optimal sequence 𝜋 2 pulse to create coherence 𝜋 pulse coherence transfer Sizeable Chiral Signals Issues with the absolute phase determination.

Thanks for your attention!! Acknowledgements National Science Foundation (NSF) grants CHE-0960074. Kevin Lehmann Thanks for your attention!!

Spectrum of Chiral Signal Fit of both MW pulses. Product generates a “marker” that can be directly compared to the filtered molecular signal. Phase can be compared across the FID

Absolute Phase Measurements fR = -2.14(67) fS = 1.29(84)