11.3 – Geometric Sequences.

Slides:



Advertisements
Similar presentations
Essential Question: What is a sequence and how do I find its terms and sums? How do I find the sum & terms of geometric sequences and series?
Advertisements

Unit 6: Sequences & Series
Warm-up Finding Terms of a Sequence
I can identify and extend patterns in sequences and represent sequences using function notation. 4.7 Arithmetic Sequences.
Arithmetic Sequences.
Bellwork:  Determine whether each of the following is Arithmetic (something was added each time), Geometric ( something was multiplied each time), or.
A sequence is geometric if the ratios of consecutive terms are the same. That means if each term is found by multiplying the preceding term by the same.
11.3 – Geometric Sequences.
Section 7.2 Arithmetic Sequences Arithmetic Sequence Finding the nth term of an Arithmetic Sequence.
12.2: Analyze Arithmetic Sequences and Series HW: p (4, 10, 12, 14, 24, 26, 30, 34)
What are two types of Sequences?
Geometric Sequences as Exponential Functions
Review for the Test Find both an explicit formula and a recursive formula for the nth term of the arithmetic sequence 3, 9, 15,……… Explicit Formula ______________________________.
Homework Questions. Geometric Sequences In a geometric sequence, the ratio between consecutive terms is constant. This ratio is called the common ratio.
Aim: What is the geometric sequence?
Homework Questions. Number Patterns Find the next two terms, state a rule to describe the pattern. 1. 1, 3, 5, 7, 9… 2. 16, 32, 64… 3. 50, 45, 40, 35…
Ch.9 Sequences and Series Section 3 – Geometric Sequences.
13.4 Geometric Sequences and Series Example:3, 6, 12, 24, … This sequence is geometric. r is the common ratio r = 2.
Do you remember what an arithmetic sequence is?
Arithmetic Sequences In an arithmetic sequence, the difference between consecutive terms is constant. The difference is called the common difference. To.
12.2, 12.3: Analyze Arithmetic and Geometric Sequences HW: p (4, 10, 12, 18, 24, 36, 50) p (12, 16, 24, 28, 36, 42, 60)
Arithmetic and Geometric Sequences. Determine whether each sequence is arithmetic, geometric, or neither. Explain your reasoning. 1. 7, 13, 19, 25, …2.
11.3 – Geometric Sequences. What is a Geometric Sequence?  In a geometric sequence, the ratio between consecutive terms is constant. This ratio is called.
ADD To get next term Have a common difference Arithmetic Sequences Geometric Sequences MULTIPLY to get next term Have a common ratio.
+ 8.4 – Geometric Sequences. + Geometric Sequences A sequence is a sequence in which each term after the first is found by the previous term by a constant.
Over Lesson 7–7 5-Minute Check 1 Describe the sequence as arithmetic, geometric or neither: 1, 4, 9, 16, …? Describe the sequence as arithmetic, geometric,
Arithmetic and Geometric Sequences.
Given an arithmetic sequence with
Review Find the explicit formula for each arithmetic sequence.
Sequences Arithmetic Sequence:
4-7 Arithmetic Sequences
Geometric Sequences and Series
Warm-up 1. Find 3f(x) + 2g(x) 2. Find g(x) – f(x) 3. Find g(-2)
3.5 Arithmetic Sequences as Linear Functions
Aim: What is the arithmetic and geometric sequence?
11-3 Geometric Sequences Hubarth Algebra II.
AKS 67 Analyze Arithmetic & Geometric Sequences
Splash Screen.
Recursive and Explicit Formulas for Arithmetic (Linear) Sequences
Unit 4 Part B GEOMETRIC SEQUENCES
Recursive and Explicit Formulas for Arithmetic (Linear) Sequences
How does the geometric sequence differ from the arithmetic sequence?
7-8 Notes for Algebra 1 Recursive Formulas.
WARM UP State the pattern for each set.
11.3 – Geometric Sequences.
Geometric Sequences.
Geometric sequences.
Coordinate Algebra Day 54
Warm Up 1. Find 3f(x) + 2g(x) 2. Find g(x) – f(x) 3. Find g(-2)
Geometric Sequences.
Geometric Sequences.
Notes Over 11.5 Recursive Rules
Arithmetic Sequences In an arithmetic sequence, the difference between consecutive terms is constant. The difference is called the common difference. To.
Geometric sequences.
Recursive and Explicit Formulas for Arithmetic (Linear) Sequences
Arithmetic Sequence A sequence of terms that have a common difference between them.
9-1 Mathematical Patterns
Geometric Sequences A geometric sequence is a list of numbers with a common ratio symbolized as r. This means that you can multiply by the same amount.
PRACTICE QUIZ Solve the following equations. x + 5 = x – 8 = -12
Module 3 Arithmetic and Geometric Sequences
Unit 3: Linear and Exponential Functions
11.2 – Arithmetic Sequences
Arithmetic Sequence A sequence of terms that have a common difference between them.
Questions over HW?.
Arithmetic Sequence A sequence of terms that have a common difference (d) between them.
Recursive and Explicit Formulas for Arithmetic (Linear) Sequences
Module 3 Arithmetic and Geometric Sequences
4-7 Arithmetic Sequences
1.6 Geometric Sequences Geometric sequence: a sequence in which terms are found by multiplying a preceding term by a nonzero constant.
Warm-Up Honors Algebra 2 9/7/18
Presentation transcript:

11.3 – Geometric Sequences

What is a Geometric Sequence? In a geometric sequence, the ratio between consecutive terms is constant. This ratio is called the common ratio. Unlike in an arithmetic sequence, the difference between consecutive terms varies. We look for multiplication to identify geometric sequences.

Ex: Determine if the sequence is geometric Ex: Determine if the sequence is geometric. If so, identify the common ratio 1, -6, 36, -216 yes. Common ratio=-6 2, 4, 6, 8 no. No common ratio

Important Formulas for Geometric Sequence: Recursive Formula Explicit Formula an = (an – 1 ) r an = a1 * r n-1 Where: an is the nth term in the sequence a1 is the first term n is the number of the term r is the common ratio Geometric Mean Find the product of the two values and then take the square root of the answer.

Let’s start with the geometric mean Find the geometric mean between 3 and 48 Let’s try one: Find the geometric mean between 28 and 5103

Ex: Write the explicit formula for each sequence First term: a1 = 7 Common ratio = 1/3 Explicit: an = a1 * r n-1 a1 = 7(1/3) (1-1) = 7 a2 = 7(1/3) (2-1) = 7/3 a3 = 7(1/3) (3-1) = 7/9 a4 = 7(1/3) (4-1) = 7/27 a5 = 7(1/3) (5-1) = 7/81 Now find the first five terms:

Explicit Arithmetic Sequence Problem Find the 19th term in the sequence of 11,33,99,297 . . . an = a1 * r n-1 Start with the explicit sequence formula Find the common ratio between the values. Common ratio = 3 a19 = 11 (3) (19-1) Plug in known values a19 = 11(3)18 =4,261,626,379 Simplify

Find the 10th term in the sequence of 1, -6, 36, -216 . . . Let’s try one Find the 10th term in the sequence of 1, -6, 36, -216 . . . an = a1 * r n-1 Start with the explicit sequence formula Find the common ratio between the values. Common ratio = -6 a10 = 1 (-6) (10-1) Plug in known values a10 = 1(-6)9 = -10,077,696 Simplify