Transformations in 3 Dimensions CS /28/2018 Dr. Mark L. Hornick

Slides:



Advertisements
Similar presentations
3D Transformations Assist. Prof. Dr. Ahmet Sayar
Advertisements

Computer Graphics: 3D Transformations
Linear Algebra and SVD (Some slides adapted from Octavia Camps)
CS 4731: Computer Graphics Lecture 7: Introduction to Transforms, 2D transforms Emmanuel Agu.
Elementary 3D Transformations - a "Graphics Engine" Transformation procedures Transformations of coordinate systems Translation Scaling Rotation.
1 CSCE 441 Computer Graphics: 2D Transformations Jinxiang Chai.
Transformations CS4395: Computer Graphics 1 Mohan Sridharan Based on slides created by Edward Angel.
2D Transformations x y x y x y. 2D Transformation Given a 2D object, transformation is to change the object’s Position (translation) Size (scaling) Orientation.
2D Transformations Unit - 3. Why Transformations? In graphics, once we have an object described, transformations are used to move that object, scale it.
3D Geometric Transformation Point in 3D space –Position (x, y, z) –Color (r, g, b) –Normal (Nx, Ny, Nz) Homogenous Coordinates –Position (x,y,z,w) –Usually.
5.2 Three-Dimensional Geometric and Modeling Transformations 2D3D Consideration for the z coordinate.
CS 480/680 Computer Graphics Transformations Dr. Frederick C Harris, Jr.
2D Geometric Transformations
Spatial Descriptions and Transformations Sebastian van Delden USC Upstate
1 Computer Graphics Week9 -3D Geometric Transformation.
16/5/ :47 UML Computer Graphics Conceptual Model Application Model Application Program Graphics System Output Devices Input Devices API Function.
KINEMATIC CHAINS AND ROBOTS (II). Many machines can be viewed as an assemblage of rigid bodies called kinematic chains. This lecture continues the discussion.
3D Transformations. Translation x’ = x + tx y’ = y + ty z’ = z + tz P = P’ = T = P’ = T. P tx ty tz xyz1xyz1 x’ y’ z’ 1 x y.
UW EXTENSION CERTIFICATE PROGRAM IN GAME DEVELOPMENT 2 ND QUARTER: ADVANCED GRAPHICS Math Review.
3D Transformation A 3D point (x,y,z) – x,y, and z coordinates
January 19, y X Z Translations Objects are usually defined relative to their own coordinate system. We can translate points in space to new positions.
Fall 2004CS-321 Dr. Mark L. Hornick 1 2-D Transformations World Coordinates Local/Modelling Coordinates x y Object descriptions Often defined in model.
Cornell CS465 Fall 2004 Lecture 9© 2004 Steve Marschner 1 3D Transformations CS 465 Lecture 9.
1 By Dr. HANY ELSALAMONY.  We have seen how to create models in the 3D world. We discussed transforms in lecture 3, and we have used some transformations.
Homogeneous Coordinates and Matrix Representations Cartesian coordinate (x, y, z) Homogeneous coordinate (x h, y h, z h, h) Usually h = 1. But there are.
Coordinate Systems and Transformations
III- 1 III 3D Transformation Homogeneous Coordinates The three dimensional point (x, y, z) is represented by the homogeneous coordinate (x, y, z, 1) In.
Jinxiang Chai CSCE441: Computer Graphics 3D Transformations 0.
Geometric Transformations Ceng 477 Introduction to Computer Graphics Computer Engineering METU.
Instructor: Dr. Shereen Aly Taie Basic Two-Dimensional Geometric Transformation 5.2 Matrix Representations and Homogeneous Coordinates 5.3 Inverse.
Objectives Introduce standard transformations Introduce standard transformations Derive homogeneous coordinate transformation matrices Derive homogeneous.
Forward Projection Pipeline and Transformations CENG 477 Introduction to Computer Graphics.
Geometric Transformations for Computer Graphics
Geometric Transformations for Computer Graphics
Coordinate Transformations
Chapter 11 Three-Dimensional Geometric and Modeling Transformations
Modeling Transformations
Transformations Objectives
3D Geometric Transformation
Geometric Transformations Hearn & Baker Chapter 5
2D Transformations By: KanwarjeetSingh
2D Geometric Transformations
Computer Graphics CC416 Week 15 3D Graphics.
3D Transformation.
Computer Graphics Lecture 18 3-D Transformations-II Taqdees A
Translation Rotation Scaling
3D Geometric Transformations
CSS Transform Apply 2D or 3D Transformations to an Element: Translate | Scale | Rotate | Skew.
Lecture 7 Geometric Transformations (Continued)
2D Transformations y y x x y x.
Three-Dimensional Graphics
12. 3D Coordinate Operations
Unit 1 Transformations in the Coordinate Plane
Geometric Transformations
Geometric Transformations
Geometric Transformations for Computer Graphics
Geometric Transformations
2D Geometric Transformations
2.1 Day 3 Linear Transformations
Three-Dimensional Graphics
Geometric Transformations
Transformations Ed Angel
Transformations Ed Angel Professor Emeritus of Computer Science
3D Geometric Transformation
CS1550 Fundamentals For Computer Graphics Transformations-2
Derivation of the 2D Rotation Matrix
Isaac Gang University of Mary Hardin-Baylor
Geometric Transformations
TWO DIMENSIONAL TRANSFORMATION
  Rotations Y Changes in frame of reference or point of view
Presentation transcript:

Transformations in 3 Dimensions CS-321 11/28/2018 Dr. Mark L. Hornick

Pure translation CS-321 11/28/2018 Dr. Mark L. Hornick

3-D Rotation About an Axis CS-321 11/28/2018 3-D Rotation About an Axis y x z Positive rotation is counterclockwise, when looking from positive direction along an axis. CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

Rotation About z-Axis Note similarity with the 2-D case CS-321 11/28/2018 Rotation About z-Axis Note similarity with the 2-D case CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

Rotation About x-Axis CS-321 11/28/2018 Dr. Mark L. Hornick

CS-321 11/28/2018 Rotation About y-Axis Note transposition of the +/- on the sin() terms w.r.t. rotation about z and x CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

CS-321 11/28/2018 Compound 3-D Rotations Arbitrary orientations can be expressed as a result of successive rotations about each axis Z  Y  X The same orientation can also be expressed as a result of successive rotations about other axes X  Y  Z Z  Y  Z And 15 others… CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

CS-321 11/28/2018 Compound rotation Any arbitrary orientation can be represented with a given set of angles. CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

CS-321 Dr. Mark L. Hornick

Direction cosines CS-321 11/28/2018 Dr. Mark L. Hornick

Inverse rotation CS-321 11/28/2018 Dr. Mark L. Hornick

Inverse rotation CS-321 11/28/2018 Dr. Mark L. Hornick

General Transformation CS-321 11/28/2018 General Transformation CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

General Inverse Transformation CS-321 11/28/2018 General Inverse Transformation CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick

Scaling Matrix in 3 dimensions CS-321 11/28/2018 Scaling Matrix in 3 dimensions Note: Usually Sx = Sy =Sz CS-321 Dr. Mark L. Hornick Dr. Mark L. Hornick