Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter
Advertisements

L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 21 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 - Fall 2010
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
Bipolar Junction Transistor (BJT) Construction
Lecture 4 Bipolar Junction Transistors (BJTs)
8. 바이폴라 트랜지스터 (Bipolar Transistor)
BJT Static Characteristics
Lecture 25 OUTLINE The Bipolar Junction Transistor Introduction
Chapter 10 BJT Fundamentals. Chapter 10 BJT Fundamentals.
Chapter 4 Bipolar Junction Transistor
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Electronics The Thirteenth Lecture
Electron-hole pair generation due to light
Introduction to BJT Amplifier
Transistor/switch/amplifier – a 3 terminal device
Bipolar Junction Transistor (BJT) Chapter and 25 March 2016
BJT Static Characteristics
(calculation: see slides 20+ in EC)
Chapter 8 Bipolar Junction Transistors
Lecture #22 OUTLINE The Bipolar Junction Transistor
Professor Ronald L. Carter
Lecture 26 OUTLINE The BJT (cont’d) Breakdown mechanisms
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture #25 OUTLINE BJT: Deviations from the Ideal
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 24 OUTLINE The Bipolar Junction Transistor Introduction
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011
Semiconductor Device Physics
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
Professor Ronald L. Carter
Transistor/switch/amplifier – a 3 terminal device
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 25 OUTLINE The Bipolar Junction Transistor Introduction
Professor Ronald L. Carter
Lecture 25 OUTLINE The BJT (cont’d) Ideal transistor analysis
Lecture 25 OUTLINE The BJT (cont’d) Ideal transistor analysis
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
BJT Static Characteristics
Professor Ronald L. Carter
Chapter 4 Bipolar Junction Transistor
Bipolar Junction Transistor (BJT) Chapter and 17 March 2017
Semiconductor Device Modeling & Characterization Lecture 15
Professor Ronald L. Carter
Professor Ronald L. Carter
Basics of Bipolar Junction Transistor
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
Bipolar Junction Transistor (BJT) Chapter and 27 March 2019
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
Chapter 5 Bipolar Junction Transistors
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ Semiconductor Device Modeling and Characterization – EE5342 Lecture 17 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

Bipolar junction transistor (BJT) E B C VEB VCB Charge neutral Region Depletion Region The BJT is a “Si sandwich” Pnp (P=p+,p=p-) or Npn (N=n+, n=n-) BJT action: npn Forward Active when VBE > 0 and VBC < 0 ©rlc L17-09Mar2011

BJT coordinate systems z x”c x” WB WB+WC -WE xB x x’E x’ Charge neutral Region Depletion Region Base Collector Emitter ©rlc L17-09Mar2011

BJT boundary and injection cond (npn) ©rlc L17-09Mar2011

BJT boundary and injection cond (npn) ©rlc L17-09Mar2011

IC npn BJT (*Fig 9.2a) ©rlc L17-09Mar2011

npn BJT bands in FA region q(VbiE-VBE ) q(VbiC-VBC ) qVBE qVBC injection high field ©rlc L17-09Mar2011

Coordinate system - prototype npn BJT (Fig 9.8*) ©rlc L17-09Mar2011

Notation for npn & pnp BJTs NE, NB, NC E, B, and C doping (maj) xE, xB, xC E, B, and C CNR widths DE, DB, DC Dminority for E, B, and C LE, LB, LC Lminority for E, B, and C (L2min = Dmin tmin) The minority carrier lifetimes in the E, B, and C regions are tE0, tB0, & tC0 ©rlc L17-09Mar2011

Notation for npn BJTs only pEO, nBO, pCO: E, B, and C thermal equilibrium minority carrier conc pE(x’), nB(x), pC(x’’): positional mathe- matical function for the E, B, and C total minority carrier concentrations The excess carrier concentrations dpE(x’), dnB(x), dpC(x’’) are the positional mathematical functions in the E, B, and C ©rlc L17-09Mar2011

Notation for pnp BJTs only nEO, pBO, nCO: E, B, and C thermal equilibrium minority carrier conc nE(x’), pB(x), nC (x’’): positional mathe- matical function for the E, B, and C total minority carrier concentrations dnE(x’), dpB(x), dnC(x’’): positional ma- thematical function for the excess minority carriers in the E, B, and C ©rlc L17-09Mar2011

npn BJT boundary conditions ©rlc L17-09Mar2011

Emitter solution in npn BJT ©rlc L17-09Mar2011

Base solution in npn BJT ©rlc L17-09Mar2011

Collector solution in npn BJT ©rlc L17-09Mar2011

Hyperbolic sine function ©rlc L17-09Mar2011

npn BJT regions of operation VBC Reverse Active Saturation VBE Forward Active Cutoff ©rlc L17-09Mar2011

npn FA BJT minority carrier distribution (Fig 9.4*) ©rlc L17-09Mar2011

npn RA BJT minority carrier distribution (Fig 9.11a*) ©rlc L17-09Mar2011

npn cutoff BJT min carrier distribution (Fig 9.10a*) ©rlc L17-09Mar2011

npn sat BJT minority carrier distribution (Fig 9.10b*) ©rlc L17-09Mar2011

Defining currents in FA mode npn BJT (Fig 9.13*) ©rlc L17-09Mar2011

npn BJT currents (F A region, ©RLC) IC = JCAC IB=-(IE+IC ) JnE JnC IE = -JEAE JRB=JnE-JnC JpE JGC JRE JpC ©rlc L17-09Mar2011

Common base current gain, aF (cont.) ©rlc L17-09Mar2011

Common emitter current gain, bF ©rlc L17-09Mar2011

Ebers-Moll Model (Neglecting G-R curr) (Fig. 9.30*) -JEAE=IE JCAC=IC ©rlc L17-09Mar2011

Source of Ebers-Moll Equations (E) ©rlc L17-09Mar2011

Source of Ebers-Moll Equations (C) ©rlc L17-09Mar2011

E-M model equations ©rlc L17-09Mar2011

Ebers-Moll Model (Neglecting G-R curr) (Fig. 9.30*) -JEAE=IE JCAC=IC ©rlc L17-09Mar2011

Linking current E-M circuit model ©rlc L17-09Mar2011

Linking current version of E-M model ©rlc L17-09Mar2011

Linking current E-M model (cont) ©rlc L17-09Mar2011

References 1 OrCAD PSpice A/D Manual, Version 9.1, November, 1999, OrCAD, Inc. 2 Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993. * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. ©rlc L17-09Mar2011