GGI, Florence, 14 September 2006 Julien Lesgourgues (LAPTH, Annecy)

Slides:



Advertisements
Similar presentations
Observational constraints and cosmological parameters
Advertisements

Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Cosmological Aspects of Neutrino Physics (III) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Cosmological Aspects of Neutrino Physics (I) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
G. ManganoThe Path to Neutrino Mass Workshop 1  -decaying nuclei as a tool to measure Relic Neutrinos Gianpiero Mangano INFN, Sezione di Napoli, Italy.
Efectos de las oscilaciones de sabor sobre el desacoplamiento de neutrinos c ó smicos Teguayco Pinto Cejas AHEP - IFIC Teguayco Pinto Cejas
WIMPless Miracle and Relics in Hidden Sectors Hai-Bo Yu University of California, Irvine Talk given at KITPC 09/16/2008 with Jonathan L. Feng and Huitzu.
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
Dark Matter: A Mini Review Jin Min Yang Hong Kong (杨 金 民)(杨 金 民) Institute of Theoretical Physics Academia Sinica, Beijing.
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
NEUTRINOS IN COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS ERICE, 17 SEPTEMBER 2005 e    
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine American Linear Collider Physics Group Seminar 20 February 2003.
IFIC, 6 February 2007 Julien Lesgourgues (LAPTH, Annecy)
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
Particle Physics and Cosmology cosmological neutrino abundance.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY Sergio Pastor (IFIC) ν.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University BLOIS, 31 MAY 2012 e    
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
Neutrinos and the large scale structure
Nobuchika Okada (KEK) Brane World Cosmologies IX Workshop on High Energy Physics Phenomenology 03 January – 14 January, 2006 Institute of Physics, Sachivalaya.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
夏陽 悉尼大学悉尼天文研究所 2015 年 9 月 14 日 中国科学院卡弗里理论物理研究所 宇宙中微子.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
MATTEO VIEL THE LYMAN-  FOREST AS A COSMOLOGICAL PROBE Contents and structures of the Universe – La Thuile (ITALY), 19 March 2006.
Observational constraints and cosmological parameters Antony Lewis Institute of Astronomy, Cambridge
THE LYMAN-  FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL Shanghai, 16 March Cosmological significance of the Lyman-  forest 2. LUQAS:
Probing cosmic structure formation in the wavelet representation Li-Zhi Fang University of Arizona IPAM, November 10, 2004.
Lyman-  quasar spectra as cosmological probes MATTEO VIEL INAF & INFN – Trieste.
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Cosmological mass bounds on hot-dark matter axions Alessandro MIRIZZI (MPI, Munich) NOW Neutrino Oscillation Workshop Conca Specchiulla, September.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
The Cosmic Microwave Background
G. Mangano 1 Relic Neutrino Distribution Gianpiero Mangano INFN, Sezione di Napoli Italy.
CMB, lensing, and non-Gaussianities
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
Neutrinos in Cosmology (II) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
Neutrino Cosmology and Astrophysics Jenni Adams University of Canterbury, New Zealand TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Phys. Lett. B646 (2007) 34, (hep-ph/ ) Non-perturbative effect on thermal relic abundance of dark matter Masato Senami (University of Tokyo, ICRR)
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
NEUTRINOS IN NUCLEOSYNTHESIS AND STRUCTURE FORMATION STEEN HANNESTAD UNIVERSITY OF SOUTHERN DENMARK NOW2004, 17 SEPTEMBER 2004 e    
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
An interesting candidate?
Sterile Neutrinos and WDM
Cosmology With The Lyα Forest
Recent status of dark energy and beyond
Neutrino Masses in Cosmology
Dark Matter: A Mini Review
Precision cosmology and neutrinos
GOLDILOCKS COSMOLOGY Work with Ze’ev Surujon, Hai-Bo Yu (1205.soon)
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
Shintaro Nakamura (Tokyo University of Science)
Laurence Perotto; LAL Orsay
Seoul National University
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
ν Are we close to measuring the neutrino hierarchy? Filipe B. Abdalla
Presentation transcript:

GGI, Florence, 14 September 2006 Julien Lesgourgues (LAPTH, Annecy) cosmological constraints on neutrinos and other light relics GGI, Florence, 14 September 2006 Julien Lesgourgues (LAPTH, Annecy)

Cosmological perturbations offer two types of constraints on DM If still relativistic around photon decoupling: contribution to radiation density CMB anisotropies (complementary to BBN) If <p> large enough: damping of structures during MD caused by free-streaming galaxy redshift surveys lyman alpha forests in quasar spectra (potentially also CMB, but not for most realistic candidates) Non-trivial entanglement between the two e.g. for scenarios with Nn light neutrinos: Nn bounds depend on Smn

Cosmological perturbations offer two types of constraints on DM If still relativistic around photon decoupling: contribution to radiation density CMB anisotropies (complementary to BBN) If <p> large enough: damping of structures during MD caused by free-streaming galaxy redshift surveys lyman alpha forests in quasar spectra (potentially also CMB, but not for most realistic candidates) Non-trivial entanglement between the two e.g. for scenarios with Nn light neutrinos: Nn bounds depend on Smn NOT AS TRIVIAL AS USUALLY THOUGHT: -rich phenomenology -effect not so simple, not degenerate with other params -spectacular sensitivity increase with future techniques (weak lensing)

Theory ? accélération décélération lente décélération rqpide inflation radiation matière énergie noire accélération décélération lente décélération rqpide accélération ?

Free-streaming and structure formation Pure CDM Einstein + conservation: dcdm+ H dcdm = 4pG rcdmdcdm  dcdm  a during MD expansion gravitational forces linear growth factor neglect small velocities: NO FREE STREAMING .. . P = dcdm2 LCDM power spectrum k

Free-streaming and structure formation Pure HDM (or WDM) Einstein + Vlasov equation:  particles with velocities cannot cluster below a diffusion length: lFS = a(t) ∫ <v> dt/a ≤ a(t) ∫ c dt/a ~ RH(t) relativistic: <v>  c constant lFS/a goes through maximum non-relativistic: <v> = <p>/m decays at non-relativistic transition: lnr

Free-streaming and structure formation Pure HDM (or WDM) lnr P HDM (standard neutrinos) WDM (smaller momenta) k

Free-streaming and structure formation mixed CDM+HDM (like standard cosmological scenario) Einstein + conservation above free-streaming scale: ddm+ H ddm = 4pG rdmddm  ddm= dcdm = dhdm  a expansion gravitational forces linear growth factor Einstein + conservation below free-streaming scale: dcdm+ H dcdm = 4pG rcdmdcdm  dcdm  a1-3/5 fn expansion gravitational forces scale-dependent linear growth factor (includes rn) with fn = rn /rm ≈ (Smn)/(15 eV) Bond, Efstathiou & Silk 1980 .. . .. .

Free-streaming and structure formation dcdm db J.L. & S. Pastor, Physics Reports [astro-ph/0603494] dn dg metric

Free-streaming and structure formation dcdm db a 1-3/5fn dn J.L. & S. Pastor, Physics Reports [astro-ph/0603494] dg metric

Free-streaming and structure formation mixed CDM+HDM (like standard cosmological scenario) P -8fn (from 3% to 60% for 0.05eV to 1eV) k

Free-streaming and structure formation mixed WDM+HDM (sterile + ordinary neutrinos) P k

Free-streaming and structure formation mixed CDM+WDM+HDM (cold + sterile neutrino + light neutrinos, axion + gravitino + light neutrinos, …) P k

Current bounds ? accélération décélération lente décélération rqpide inflation radiation matière énergie noire accélération décélération lente décélération rqpide accélération ?

Minimal LCDM+3n

Bounds on neutrino mass mass bounds for 3-n scenarios : 7-parameter fits J.L. & S. Pastor, Physics Reports [astro-ph/0603494]

Bounds on neutrino mass extra parameters  degeneracies bounds grow by factor < 2 (e.g. extra rel. d.o.f., tilt running, w …) mass bounds for 3-n scenarios : 7-parameter fits J.L. & S. Pastor, Physics Reports [astro-ph/0603494]

LCDM+more light n’s

(Neff-1) massless n + 1 massive n Hannestad & Raeffelt astro-ph/0607086 WMAP + otherCMB + SDSS + BAO…

LWDM (early decoupled thermal relic)

P(k)WDM P(k)CDM in the approximation where fns ≈ (sinq)2 fFD(Tn) 7210eV 4430eV 1440eV 2970eV P(k)WDM ms=180eV P(k)CDM free-streaming linear galaxy correlation function Lyman-a forests

- LUQAS data (few QSO, high res, conservative errorbars) LCDM LWDM msterile = 1.75 keV 30 comoving Mpc/h, 2003 particules, z=3 Viel et al. 2005 - LUQAS data (few QSO, high res, conservative errorbars) - full hydro-dynamical simulations (GADGET2) with 60 com. Mpc/h, 4003 particles m > 0.5 keV Seljak et al. 2005 m > 2.5 keV (SDSS Ly-a + their method) Viel et al. 2006 m > 2 keV (SDSS Lya + our method)

LWDM (sub-case of sterile n)

… when fns proportional to fna Viel et al. 2005 - LUQAS data (few QSO, high res, conservative errorbars) - full hydro-dynamical simulations (GADGET2) with 60 com. Mpc/h, 4003 particles m > 2 keV Seljak et al. 2005 m > 15 keV (SDSS Ly-a + their method) Viel et al. 2006 m > 10 keV (SDSS Lya + our method)

LCWDM (light gravitino)

Thermal relics… … decoupling from thermal equilibrium when relativistic, then collisionless : fn = [ep/T+1]-1 g* e.g. 106 for SM 100 QCD phase transition 10.75 10 light gravitino (LSP in gauge-mediated SUSY breaking) e-e+ annihilation v decoupling 1 103 1 10-3 10-6 T (GeV)

light gravitinos gauge-mediated SUSY breaking: LSP = ½ helicity component of gravitino, decouples while relativistic W3/2 h2 = 0.117 (100/g*) (m3/2/100eV) with g* function of m3/2 and other masses Pierpaoli, Borgani, Masiero, Yamaguchi 97: 10 eV < m3/2 < 100 eV  g* ~ 100 (±10%) m3/2 > 100 eV : overclose Universe m3/2 < 10 eV : signature becomes small m3/2 ~ 100eV ( ~ 100% of gravitino DM ) EXCLUDED

light gravitino Viel, JL, Haehnelt, Matarrese, Riotto 05 g*=100, (wCDM , m3/2 ) = free parameters (kFS, w3/2 ) = related parameters (CMB+LSS  wCDM+w3/2~0.125 ) free-streaming effect:  no CMB effect (large scales : CDM=WDM) Lya sensitivity 10eV P(k)WDM 20eV 30eV P(k)CDM 50eV 70eV 100eV

light gravitinos Lsusy ~ (m3/2 MP)1/2 < 260 TeV WMAP + Lya analysis: m3/2 < 16 eV (2s) gauge-mediated SUSY scenario: Lsusy ~ (m3/2 MP)1/2 < 260 TeV robust even for model with NSP  gravitino possible way out: entropy production after gravitino decoupling wDM Fujii & Yanagida 02; Baltz & Murayama 03

Many more interesting cases… Extra massive/massless relics interacting among themselves or with massless/massive bosons (Cirelli & Strumia) MaVaNs (Mota et al., …) Decaying neutrinos (Beacom et al., Hannestad et al., …) Standard neutrinos with non-thermal corrections from decaying scalar (Cuoco et al., …) or low-scale reheating (Kawasaki et al., …) Standard neutrinos with Bose-Einstein statistics (Dolgov et al.) …

Prospects ? accélération décélération lente décélération rqpide inflation radiation matière énergie noire accélération décélération lente décélération rqpide accélération ?

Prospects on neutrino mass bounds future CMB + galaxy redshift surveys

Prospects on neutrino mass bounds CMB weak lensing dT/Tobs(n)=dT/T(n+f) gravitational potential integrated along line-of-sight with window function probing up to z~3 deflection field measurable statistically !! no bias uncertainty small scales much closer to linear regime makes CMB alone more sensitive to masses < 0.3eV

Quadratic estimator : forecasts Hu & Okamoto, astro-ph/0511735 Lesgourgues, Perotto, Pastor, Piat, astro-ph/0511735

Quadratic estimator : forecasts Lesgourgues, Perotto, Pastor, Piat, astro-ph/0511735

Applications sensitivity forecast in Lesgourgues, Perotto, Pastor, Piat, astro-ph/0511735 : Fisher matrix analysis : gaussian approximation of L (qi) derivatives dClff / dqi results for Mn : s(Mn) in eV for future CMB experiments alone :

Perotto, Lesgourgues, Hannestad, Tu, Wong, astro-ph/0606227

Prospects on neutrino mass bounds galaxy weak lensing deflection sensitive to gravitational potential integrated along line-of-sight with window function centered on d ~ dS/2 deflection field measurable statistically !! no bias uncertainty small scales close to linear regime tomography: 3D reconstruction

Prospects on neutrino mass bounds expected power spectrum of deflection field from sources at z ~ 1100 (CMB) (error for CMBpol) linear from sources at z ~ 0.2, 0.6, … 3.0 (error for LSST)

Prospects on neutrino mass bounds summary of 2s expected errors on Smn (eV) : PLANCK + gal. lensing CMBpol lensing

End

3 massless ns + DN massive n Cirelli & Strumia astro-ph/0607086 WMAP+otherCMB+SDSS+BAO…