TCLIA/TCTV transverse impedance simulation

Slides:



Advertisements
Similar presentations
CLIC drive beam accelerating (DBA) structure Rolf Wegner.
Advertisements

Accelerator Science and Technology Centre Prospects of Compact Crab Cavities for LHC Peter McIntosh LHC-CC Workshop, CERN 21 st August 2008.
S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super.
Impedance measurements at SLS E. Koukovini-Platia CERN, EPFL TIARA mid-term meeting, Madrid, 13 th June 2012 Many thanks to M. Dehler, N. Milas, A. Streun.
8/24/2015Pengda Gu, Structure Meeting Study on 30GHz Pulse Compressor 1.Simulation of a multi-cavity RF pulse compressor using a coupled resonator model.
TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012.
RFQ Thermal Analysis Scott Lawrie. Vacuum Pump Flange Vacuum Flange Coolant Manifold Cooling Pockets Milled Into Vanes Potentially Bolted Together Tuner.
KICKER LNF David Alesini LNF fast kickers study group* * D. Alesini, F. Marcellini P. Raimondi, S. Guiducci.
Impedance aspects of Crab cavities R. Calaga, N. Mounet, B. Salvant, E. Shaposhnikova Many thanks to F. Galleazzi, E. Metral, A. Mc Pherson, C. Zannini.
Impedance and Collective Effects in BAPS Na Wang Institute of High Energy Physics USR workshop, Huairou, China, Oct. 30, 2012.
Course B: rf technology Normal conducting rf Part 5: Higher-order-mode damping Walter Wuensch, CERN Sixth International Accelerator School for Linear Colliders.
Acknowledgements F. Caspers, H. Damerau, M. Hourican, S.Gilardoni, M. Giovannozzi, E. Métral, M. Migliorati, B. Salvant Dummy septum impedance measurements.
FAST KICKER STATUS Fabio Marcellini On behalf of LNF fast kickers study group* * D. Alesini, F. Marcellini P. Raimondi, S. Guiducci.
Update of the SPS transverse impedance model Benoit for the impedance team.
Harold G. Kirk Brookhaven National Laboratory Progress in Quad Ring Coolers Ring Cooler Workshop UCLA March 7-8, 2002.
Update on BGV impedance studies Alexej Grudiev, Berengere Luthi, Benoit Salvant for the impedance team Many thanks to Bernd Dehning, Massimiliano Ferro-Luzzi,
Simulation of trapped modes in LHC collimator A.Grudiev.
MP - HIPPI General meeting, Abingdon October 28-30, Side Coupled Linac Design at CERN Side Coupled Linac Design at CERN M. Pasini, Abingdon September.
Trapped Modes in LHC Collimator (II) Liling Xiao Advanced Computations Department SLAC National Accelerator Laboratory.
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy Effects of Impedance in Short Pulse Generation Using.
Update on TCTP heating H. Day, B. Salvant Acknowledgments: L. Gentini and the EN-MME team.
Hybrid designs - directions and potential 1 Alessandro D’Elia, R. M. Jones and V. Khan.
TESLA DAMPING RING RF DEFLECTORS DESIGN F.Marcellini & D. Alesini.
August 21st 2013 BE-ABP Bérengère Lüthi – Summer Student 2013
Status of work on the HOM coupler. 2 nd Harmonic cavity Meeting 11/II-2016 Thermal analyses with shims (Y.Terechkine). Gennady Romanov On behalf of Y.Terechkine.
Optimization of waveguide geometry in the CLIC-G structures Hao Zha 13/08/2014.
Elias Métral, LHC collimation working group meeting, 17/07/061/26 E. Métral for the RLC team LATEST ESTIMATES OF COLLIMATOR IMPEDANCE EFFECTS u Reminder:
HOMSC Fermilab HOM Couplers for CERN SPL Cavities K. Papke, F. Gerick, U. van Rienen 1 Work supported by the Wolfgang-Gentner-Programme.
Update on the TDI impedance simulations and RF heating for HL- LHC beams Alexej Grudiev on behalf of the impedance team TDI re-design meeting 30/10/2012.
Impedance of current TCP compared to new TCP with button.
Magnet and ferrites tests Luciano Elementi Mu2e Extinction Technical Design Review 2 November 2015.
XXIII European Synchrotron Light Source Workshop, November 2015 Eirini Koukovini-Platia Diamond Light Source Collective effects at Diamond Experimental.
Geometric Impedance of LHC Collimators O. Frasciello, S. Tomassini, M. Zobov LNF-INFN Frascati, Italy With contributions and help of N.Mounet (CERN), A.Grudiev.
High Bandwidth Damper System: kicker impedance
Higher Order Modes and Beam Dynamics at ESS
HOM power in FCC-ee cavities
Sergey Antipov, Nicolo Biancacci, and david amorim
Summary of the test structure design
Update of CLIC accelerating structure design
CST simulations of VMTSA
Dummy septum impedance measurements
TCTP the CST side F. Caspers, H. Day, A. Grudiev, E. Metral, B. Salvant Acknowledgments: R. Assmann, A. Dallocchio, L. Gentini, C. Zannini Impedance Meeting.
LHC COLLIMATOR IMPEDANCE
RF modes for plasma processing
¼ meshed models for Omega3P calculations
Discussion on the TDI impedance specifications
Simulation of Monopole modes trapped in LHC collimator
Simulation of trapped modes in LHC collimator
LHC (SSC) Byung Yunn CASA.
TCLIA/TCTV broad band transverse impedance
CEPC Main Ring Cavity Design with HOM Couplers
Simulation of Longitudinal and Transverse Impedance of TCDD (original geometry) Grudiev
Origin of TCLIA/TCTV transverse BB impedance
Progress in the design of a damped an
Simulation of Monopole modes trapped in LHC collimator
LHC Collimator – RF Contact Concept (180o wrap)
Possible Methods for Reducing the Trapped Mode Effect in the SLAC Rotatable Collimator for the LHC Phase II Upgrade Liling Xiao 1.
Collimator design with BPMs (TCTP)
CLIC Power Extraction and Transfer structure (PETS)
FOLLOW-UP FOR THE TCDQ & TCDS & TDI concerning the RF fingers
TCLIA/TCTV transverse BB impedance versus gap size
Origin of TCLIA/TCTV transverse BB impedance
Two beam coupling impedance simulations
Parameters Changed in New MEIC Design
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
RF Parameters for New 2.2 km MEIC Design
Update on Crab Cavity Simulations for JLEIC
RF Parameters for New 2.2 km MEIC Design
Transverse impedance of trapped modes in LHC collimator
TCLIA/TCTV transverse BB impedance versus gap size
Presentation transcript:

TCLIA/TCTV transverse impedance simulation Grudiev 10.02.2006 RLC meeting

TCLIA/TCTV geometry Max gap: 60mm Min gap (TCLIA Graphite):12mm Min gap (TCTV Tungsten): 3mm

GdfidL simulation of transverse impedance 15o linear taper, 3mm gap BB transverse impedance ~ 300 kΩ/m (15% of LHC)

Dipole trapped mode electric field

Dipole trapped mode impedance and tune shift f [MHz] Q Rt [MΩ/m] 1 317 3080 16.6 2 362 1700 152.8 3 443 1080 173.8 4 551 920 81.4 LHC top energy pars: E = 7000 GeV σz = 80 mm N = 1011 f0 = 11.2455 kHz Qy = 59.31

Jaw taper shape optimization 15o- linear taper n f [MHz] Q Rt [MΩ/m] 2 362 1700 152.8 3 443 1080 173.8 10o- linear taper n f [MHz] Q Rt [MΩ/m] 2 362 1720 132.9 3 443 1100 186.0 10o- non-linear taper n f [MHz] Q Rt [MΩ/m] 2 360 1750 98.9 3 437 1120 139.8 It is not a solution for dipole trapped modes

Dipole trapped mode damping with 4S60 ferrite Sliding rf contact

Conclusions and recomentadions Transverse impedance of the present design (both Broad Band and trapped modes) is too high Reduction of jaw taper angle from 15 to 10(7) degree and/or making non-linear taper is not a solution for the trapped modes. But, probably, it can reduce the BB impedance A possible solution for reduction of impedance of the dipole trapped modes by means of damping could be opening the longitudinal slots. The drawback will be excitation of low frequency trapped modes both monopole and dipole which on the other hand can be damped efficiently. (to be demonstrated)