Volume 3, Issue 2, Pages (August 2017)

Slides:



Advertisements
Similar presentations
Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy  Shengpeng.
Advertisements

Near-infrared light-responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor 
Volume 24, Issue 10, Pages e3 (October 2017)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 2, Pages (October 2017)
Multifunctional Graphene Hair Dye
Volume 2, Issue 3, Pages (March 2017)
Volume 3, Issue 4, Pages (October 2017)
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Volume 2, Issue 2, Pages (February 2018)
Volume 1, Issue 2, Pages (August 2016)
Volume 3, Issue 2, Pages (August 2017)
Volume 1, Issue 3, Pages (November 2017)
On the Electrolytic Stability of Iron-Nickel Oxides
Two-Photon Luminescent Bone Imaging Using Europium Nanoagents
Structure of the Human Telomerase RNA Pseudoknot Reveals Conserved Tertiary Interactions Essential for Function  Carla A. Theimer, Craig A. Blois, Juli.
Volume 3, Issue 3, Pages (September 2017)
Aaron R. Seitz, Praveen K. Pilly, Christopher C. Pack  Current Biology 
Volume 13, Issue 9, Pages (September 2005)
Structure of the Human Telomerase RNA Pseudoknot Reveals Conserved Tertiary Interactions Essential for Function  Carla A. Theimer, Craig A. Blois, Juli.
Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting  Guorui Cai, Wang Zhang, Long Jiao, Shu-Hong.
Volume 1, Issue 4, Pages (December 2017)
Key Interactions for Clathrin Coat Stability
A.S. Parfenov, V. Salnikov, W.J. Lederer, V. Lukyánenko 
Volume 1, Issue 2, Pages (August 2016)
Image-Guided Therapy Using Maghemite-MOF Nanovectors
Human DMBT1-Derived Cell-Penetrating Peptides for Intracellular siRNA Delivery  Martina Tuttolomondo, Cinzia Casella, Pernille Lund Hansen, Ester Polo,
Volume 1, Issue 2, Pages (August 2016)
Quantum Dot-Mediated Detection of γ-Aminobutyric Acid Binding Sites on the Surface of Living Pollen Protoplasts in Tobacco  Guanghui Yu, Jiangong Liang,
Volume 2, Issue 2, Pages (February 2017)
Volume 20, Issue 1, Pages (July 2016)
A Model for the Solution Structure of the Rod Arrestin Tetramer
Volume 3, Issue 5, Pages (November 2017)
Volume 5, Issue 3, Pages (March 2019)
Volume 3, Issue 6, Pages (December 2017)
Volume 2, Issue 2, Pages (February 2017)
Probing Red Blood Cell Morphology Using High-Frequency Photoacoustics
Volume 25, Issue 7, Pages (July 2017)
Volume 4, Issue 2, Pages (February 2018)
What Limits the Performance of Ta3N5 for Solar Water Splitting?
Actin Assembly at Model-Supported Lipid Bilayers
Volume 2, Issue 6, Pages (June 2017)
Volume 14, Issue 7, Pages (July 2007)
Volume 4, Issue 2, Pages (February 2018)
Volume 3, Issue 4, Pages (October 2017)
Volume 3, Issue 5, Pages (November 2017)
Volume 3, Issue 1, Pages (July 2017)
Volume 1, Issue 2, Pages (August 2016)
Volume 105, Issue 10, Pages (November 2013)
Volume 3, Issue 4, Pages (October 2017)
Tradeoffs and Optimality in the Evolution of Gene Regulation
Volume 13, Issue 2, Pages (February 2006)
Volume 112, Issue 8, Pages (April 2017)
Volume 2, Issue 11, Pages (November 2018)
Dynamic Shape Synthesis in Posterior Inferotemporal Cortex
Volume 1, Issue 1, Pages (July 2016)
Multifunctional Graphene Hair Dye
Volume 26, Issue 1, Pages (January 2018)
Erika J Mancini, Felix de Haas, Stephen D Fuller  Structure 
Volume 11, Pages (January 2019)
Volume 4, Issue 1, Pages (January 2018)
Volume 3, Issue 1, Pages (July 2017)
Volume 27, Issue 7, Pages e5 (July 2019)
Volume 105, Issue 10, Pages (November 2013)
Volume 3, Issue 1, Pages 8-10 (July 2017)
A Model for the Solution Structure of the Rod Arrestin Tetramer
Volume 4, Issue 3, Pages (March 2018)
Volume 2, Issue 6, Pages (June 2017)
Volume 3, Issue 4, Pages (October 2017)
Volume 3, Issue 5, Pages (November 2017)
Presentation transcript:

Volume 3, Issue 2, Pages 303-322 (August 2017) Maghemite-nanoMIL-100(Fe) Bimodal Nanovector as a Platform for Image-Guided Therapy  Saad Sene, M. Teresa Marcos-Almaraz, Nicolas Menguy, Joseph Scola, Jeanne Volatron, Richard Rouland, Jean-Marc Grenèche, Sylvain Miraux, Clotilde Menet, Nathalie Guillou, Florence Gazeau, Christian Serre, Patricia Horcajada, Nathalie Steunou  Chem  Volume 3, Issue 2, Pages 303-322 (August 2017) DOI: 10.1016/j.chempr.2017.06.007 Copyright © 2017 Elsevier Inc. Terms and Conditions

Chem 2017 3, 303-322DOI: (10.1016/j.chempr.2017.06.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 1 Maghemite NPs (A) High-resolution TEM image of γFe2O3 NPs. (B) FTIR spectra of γFe2O3 and γFe2O3-cit NPs. See also Figure S2. Chem 2017 3, 303-322DOI: (10.1016/j.chempr.2017.06.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 2 Surface Charge of MIL-100(Fe) and USPIO NPs Evolution of the ζ potential with pH for (A) γFe2O3 and MIL-100(Fe) and (B) γ-Fe2O3-cit and MIL-100(Fe). Chem 2017 3, 303-322DOI: (10.1016/j.chempr.2017.06.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 3 XRD Pattern of MIL/USPIO-cit(10) A structureless refinement was first performed for maghemite; the scaling factor was then fixed before profile matching for MIL-100(Fe) (λCu = 1.5406 Å). See also Figure S8. Chem 2017 3, 303-322DOI: (10.1016/j.chempr.2017.06.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 4 TEM Characterization of MIL/USPIO(10) and MIL/USPIO-cit(10) Nano-objects TEM bright-field observations of (A and B) MIL/USPIO(10) and (C–F) MIL/USPIO-cit(10). (A and B) MIL-100(Fe) NPs are covered by γ-Fe2O3 particles (A), as confirmed by high-resolution imaging (B). (C) γ-Fe2O3-cit aggregates (black solid arrow) and MIL/USPIO-cit (black dotted arrow) are simultaneously present on the carbon grids. (D) MIL-100(Fe) NPs are coated by γ-Fe2O3-cit NPs. (E and F) A network of MIL/USPIO-cit(10) nano-objects. MIL-100(Fe) NPs are covered by γ-Fe2O3-cit particles (E), as confirmed by high-resolution imaging (F). Insets of (B) and (F): the fast Fourier transform related to the crystalline particle is coherent with the inverse-spinel structure described in the cubic cell with a = 8.34 Å. See also Figures S9–S11. Chem 2017 3, 303-322DOI: (10.1016/j.chempr.2017.06.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 5 TEM Characterization of MIL/USPIO-cit(1) at Different pH TEM images of MIL/USPIO-cit(1) at (A and B) pH 3.5 and (C and D) pH 7 (PBS-BSA medium). See also Figure S12. Chem 2017 3, 303-322DOI: (10.1016/j.chempr.2017.06.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 6 Colloidal Stability of MIL/USPIO-cit Nano-objects in Physiologic Serum Conditions DLS of the MIL/USPIO-cit (10 and 1 wt %) nano-objects in 0.01 M PBS (blue line) and 0.01 M PBS with 5.4% w/v BSA (orange line) at 37°C and 100 rpm. The evolution of the average particle diameter for (A) MIL/USPIO-cit(10) and (B) MIL/USPIO-cit(1) and the polydispersity index (PdI) over a time period of 24 hr for (C) MIL/USPIO-cit(10) and (D) MIL/USPIO-cit(1) are shown. Chem 2017 3, 303-322DOI: (10.1016/j.chempr.2017.06.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 7 Relaxometric and Magnetic Properties of MIL/USPIO-cit Nano-objects (A) T2-weighted MRI images extracted from T2 measurements compare the T2 contrast from the MIL/USPIO-cit(10) nano-objects with Fe concentration ranging from 0 (control) to ∼5.8 mM. (B) Transverse relaxation rates (1/T2, s−1) as a function of iron concentration for the γ-Fe2O3-cit, MIL-100(Fe), MIL/USPIO-cit(10), and MIL/USPIO-cit(1) prepared in PBS-BSA solution at pH 7.4. (C) Separation of MIL/USPIO-cit(10) and MIL/USPIO-cit(1) from solution under an external magnetic field. (D) Magnetization curve of MIL/USPIO-cit(1) at 300 K (solid black line) and a Langevin fit (dotted red line). See also Table S1 and Figures S13–S15. Chem 2017 3, 303-322DOI: (10.1016/j.chempr.2017.06.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 8 Drug Delivery, Cytotoxicity, and Anti-cancer Efficiency of MIL/USPIO-cit (A) Doxorubicin delivery under simulated physiologic conditions (PBS, 37°C) from MIL-100(Fe), MIL/USPIO-cit(1), and MIL/USPIO-cit(10). (B) Normalized cell viability obtained after incubation with pure nano-objects (i.e., MIL-100(Fe) and MIL/USPIO-cit(10)) and nano-objects loaded with DOX (i.e., DOX@MIL-100(Fe) and DOX@MIL/USPIO-cit(10)) at 100, 50, and 10 μg/mL and with free DOX at 6, 3, and 0.6 μM. (C) Optical micrographs of cells incubated with DOX@MIL/USPIO-cit(10) at 100, 50, and 10 μg/mL and control cells. All experiments were carried out in triplicate. Scale bars, 20 μm. See also Figure S16. Chem 2017 3, 303-322DOI: (10.1016/j.chempr.2017.06.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 9 3D T2*-Weighted Gradient Echo Images of the Mouse Abdomen before and after Injection of Contrast Agent Liver and spleen locations are indicated in the last column. See also Figure S17. Chem 2017 3, 303-322DOI: (10.1016/j.chempr.2017.06.007) Copyright © 2017 Elsevier Inc. Terms and Conditions

Scheme 1 Trimers of Fe(III) Octahedra Assembled with Trimesic Acid Leading to the Formation of the MIL-100(Fe) Structure with a Zeolitic Architecture of the MTN Type Chem 2017 3, 303-322DOI: (10.1016/j.chempr.2017.06.007) Copyright © 2017 Elsevier Inc. Terms and Conditions