THE STRUCTURE OF PHENYLGLYCINOL

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
Microwave spectroscopy of 2-furancarboxylic acid Roman A. Motiyenko, Manuel Goubet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University Lille.
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
Microwave Rotational Spectroscopy
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Physique des Lasers, Atomes et Molécules
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Grupo de Espectroscopía Molecular, Lab. De Espectroscopia y Bioespectroscopia Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid Valladolid,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
The Millimeter- and Submillimeter-Wave Spectrum of Propenal A. M. DALY, C. BERMÚDEZ, L. KOLESNIKOVÁ, AND J. L. ALONSO Grupo de Espectroscopia Molecular.
June 25, th International Symposium on Molecular Spectroscopy Hyperfine Resolved Pure Rotational Spectroscopy of ScN, YN, and BaNH (X 1  + ):
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
The complete rotational spectrum of CH 3 NCO up to 376 GHz Zbigniew Kisiel, a Lucie Kolesnikova, b Jose L. Alonso, b Ivan R. Medvedev, c Sarah Fortman,
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
A NUCLEOSIDE UNDER OBSERVATION IN THE GAS PHASE: A ROTATIONAL STUDY OF URIDINE I. PEÑA, J.L. ALONSO Grupo de Espectroscopia Molecular. Unidad asociada.
Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H.
Further analysis of the laboratory rotational spectrum of CH3NCO
International Symposium on Molecular Spectroscopy
Max Planck Institute for the Structure and Dynamics of Matter
The microwave spectroscopy study of 1,2-dimethoxyethane
Juliane Heitkämper, John C Mullaney, Nick Walker
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
Microwave and infrared spectra of urethane
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
FOUR STRUCTURES OF TARTARIC ACID REVEALED IN THE GAS PHASE
Carlos Cabezas and Yasuki Endo
The microwave spectrum of lactaldehyde, the simplest chiral sugar.
SUSANA BLANCO Departamento de Química Física y Química Inorgánica
SEVEN CONFORMERS OF PIPECOLIC ACID IDENTIFIED IN THE GAS PHASE
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Bromoperfluoroacetone
THE MILLIMETER-WAVE SPECTRUM OF VINYL ACETATE
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
Microwave spectra of 1- and 2-bromobutane
Mahdi Kamaee and Jennifer van Wijngaarden
MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO
LABORATORY AND ASTRONOMICAL DISCOVERY OF HYDROMAGNESIUM ISOCYANIDE
Fourier transform microwave spectra of n-butanol and isobutanol
The rotational spectrum of the urea isocyanic acid complex
The Conformational Landscape of Serinol
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Elias M. NEEMAN and Thérèse R. HUET
Presentation transcript:

THE STRUCTURE OF PHENYLGLYCINOL A. SIMAO, I. PEÑA, C. CABEZAS, J.L. ALONSO Grupo de Espectroscopia Molecular. Unidad asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad de Valladolid SPAIN

QUADRUPOLE COUPLING HYPERFINE STRUCTURE Phenylglycinol: unveiling the conformational panorama 0 cm-1 368 cm-1 116 cm-1 QUADRUPOLE COUPLING HYPERFINE STRUCTURE I III II 14N V IV AROMATIC AMINO ALCOHOL 674 cm-1 707 cm-1 HIGH FLEXIBILITY MP2/6-311++G(d,p) level of theory

Phenylglycinol: experimental strategy Broadband CP-FTMWspectroscopy + laser ablation source EFFICIENT CONFORMATIONAL SEARCH Rotational constants: A, B, C 14N 2. Narrowband LA-MB-FTMW spectroscopy Sub-doppler resolution Nuclear quadrupole coupling constants: aa, bb, cc

+ CP-FTMW experimental setup CP-FTMW spectroscopy Laser Ablation (LA) Broadband FT-MW spectrometer Supersonic Expansion 6-18 GHz S. Mata I. Peña, et al. J. Mol. Spectr. 280 (2012) 91–96 Picosecond Laser

CP-FTMW experimental setup Ne Rotary Diffusion pump Nd:YAG laser

CP-FTMW experimental setup Gas pulse Jet Ne Laser pulse Solid sample Rotary Diffusion pump Laser Nd:YAG laser

CP-FTMW experimental setup spectrometer Gas pulse MW field Polarization Ne Laser pulse Chirped MW pulse Rotary Diffusion pump

CP-FTMW experimental setup spectrometer Gas pulse Molecular emission Ne Laser pulse Chirped MW pulse Rotary Diffusion pump Detection Detection Frequency-domain Time-domain FT

LA-MB-FTMW experimental setup Laser Ablation Molecular Beam Fourier Transform Microwave Spectroscopy * LA-MB-FTMW J. L. Alonso et al. PCCP 11 (2009) 617–627

Phenylglycinol: Rotational spectra J’J’’= 5 4 6 5 7 6 8 7 14N B + C  1435 MHz Intense a-type R-branch progressions Rotamer assigned LA-MB-FTMW CP-FTMW

SEARCHING FOR THE SECOND CONFORMER… Phenylglycinol: Results Theory Experiment   I II III IV V Rotamer Aa 3085.2 3053.6 3019.7 2255.3 2459.5 3087.32251(76)g B 735.7 757.9 756.9 936 918 738.36002(24) C 700.9 700.2 699.2 804.3 838 700.88602(25) χaa -4.54 1.35 1.14 1.91 -0.41 -4.2691(46) χbb 2.27 -0.82 -0.84 1.59 -0.6 2.2247(54) χcc -0.53 -0.31 -3.49 1.01 2.0444(54) a -2.8 1 0.3 Observedf b 0.9 -1.7 -1 Observed c 1.4 -0.7 1.3 -0.2 ΔEb 115 330 773 678 - ΔGc 116 368 674 707 d 2.6 Ne 40 SEARCHING FOR THE SECOND CONFORMER… OHN NH H-bonds [a] A, B, and C represent the rotational constants (in MHz), |µa|, |µb| and |µc| are the absolute values of electric dipole moment components (in D). [b] Electronic energies including zero-point energy correction (in kJmol-1). [c] Gibbs energies calculated at 298 K. [d] Rms deviation of the fit. [e] Number of fitted transitions. [f] Standard error in parenthesis in the units of the last digit. [g]Observation of a-, b-, and c-type transitions for each structure.

Phenylglycinol: Isotopic species 13C and 15N isotopologues in natural abundance of the rotamer observed CP-FTMW

Rotational Constants (MHz) Phenylglycinol: rs structure Rotational Constants (MHz) Isotope aA B C 13C2 3061.52(60)b 733.2767(2) 697.0554(4) 13C3 3073.20(42) 736.5844(2) 699.4181(3) 15N4 3042.441(3) 733.0243(3) 697.1060(5) 13C6 3057.35(81) 736.93381(9) 698.2853(2) 13C7 3054.22(20) 731.8173(1) 693.8106(2) 13C8 3084.80(101) 728.5411(7) 692.0986(6) 13C9 3058.03(27) 732.9438(1) 694.8334(2) 13C10 3063.47(19) 737.5659(9) 699.0628(2) C4 C5 C9 C10 C1 N2 O1 C17 C3 C8 Substitution coordinates a b c C3 1.248(28) -0.17(20) 0.31(11) C4 -1.083(10) -1.232 (22) 0.395(72) C5 -2.479(13) -1.115 (29) 0.13(26) C8 -3.027(9) 0.16 (22) -0.31(11) C9 -2.178(10) 1.245(35) -0.580(79) C10 -0.690(2) 1.176(40) -0.533(93) C17 2.013(5) -0.24(17) -0.840(50) N2 1.802(5) 0.8125(20) 1.3474(12) rs structure r(C4-C5) 1.426(58)a  C4C5C8 119.7(46) r(C5-C8) 1.46(21) C8C9C10 124.4(62) r(C8-C9) 1.40(18) C5C8N2 120.4(27) r(C9-C10) 1.489(72)

Conclusions Detection of one rotamer of neutral phenylglycinol, which is stabilized by an OH∙∙∙N bond, within the ethanolamine moiety, and one NH∙∙∙π bond with the phenyl ring The high sensitivity reached with this experimental approach, based on a parabolic reflector system, has allowed the observation of eight monosubstituted isotopic species in natural abundance for the most stable conformer The combination of CP-FTMW and LA-MB-FTMW represents an excellent experimental approach to face the challenge of investigating biological systems with an expected rich conformational behavior

CSD 2009-00038 Molecular Astrophysics ACKNOWLEDGMENTS Grupo de Espectroscopia Molecular (GEM) Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, UVa,Valladolid, Spain Grants CTQ 2010- 19008, AYA 2009-07304 and AYA 2012-32032 CSD 2009-00038 Molecular Astrophysics Grants VA070A08 and CIP13/01