Chapter V Gases.

Slides:



Advertisements
Similar presentations
The Gas Laws You can predict how pressure, volume, temperature, and number of gas particles are related to each other based on the molecular model of a.
Advertisements

Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Chapter 11 Gas Laws. The Gas Phase Gases have no distinct volume or shape. Gases expand to fill the volume of their container. Gas particles are miscible.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Gases Chapter 5 Become familiar with the definition and measurement of gas pressure.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Gases Chapter 5 Become familiar with the definition and measurement of gas pressure.
Pressure Pressure: Force applied per unit area. Barometer: A device that measures atmospheric pressure. Manometer: A device for measuring the pressure.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Chapter 13 Gases. Chapter 13 Table of Contents Copyright © Cengage Learning. All rights reserved Pressure 13.2 Pressure and Volume: Boyle’s Law.
1 Chapter 5: GASES. 2  In this chapter we will:  Define units of pressure and volume  Explore the properties of gases  Relate how the pressure, volume,
13.1 Pressure- force exerted over an area
Gases Kinetic Theory of Ideal Gas, Gas Laws & Equation Combined Gas Laws, Numerical value of R.
The Behavior of Gases AW Chapter 10, section 1 and Chapter 12.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 A Gas 4 Uniformly fills any container. 4 Mixes completely with any other gas 4 Exerts.
Chapter 5 Gases AP*. Section 5.1 Pressure Why study gases?  An understanding of real world phenomena.  An understanding of how science “works.” Copyright.
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Chapter 10 Gases. A Gas -Uniformly fills any container. -Mixes completely with any other gas -Exerts pressure on its surroundings.
Gases Courtesy of nearingzero.net.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
A Gas -Uniformly fills any container. -Mixes completely with any other gas -Exerts pressure on its surroundings.
You can predict how pressure, volume, temperature, and number of gas particles are related to each other based on the molecular model of a gas.
Gas Laws Chapter 5. Gases assume the volume and shape of their containers. Gases are the most compressible state of matter. Gases will mix evenly and.
Chapter 10; Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Chapter 5: Gases 5.1 Pressure. Gaseous State of Matter  has no distinct or __________ so fills any container  is easily compressed  completely with.
Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Chapter 10: Gases.
Chapter 09Slide 1 Gases: Their Properties & Behavior 9.
Gases Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Gas Laws Chapter 10 CHEM140 February 2, Elements that exist as gases at 25 0 C and 1 atmosphere.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 A Gas 4 Uniformly fills any container. 4 Mixes completely with any other gas 4 Exerts.
Gases Chap. 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint Lecture Robertson, Univ. of Missouri.
Gases Chapter 5. Substances that exist as gases Elements that exist as gases at 25 0 C and 1 atmosphere.
Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Gases. Kinetic Theory of Gases Explains Gas behavior: 4 parts: 1) Gas particles do not attract or repel each other (no I.M. forces).
Gas Laws Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Congratulations….you’re almost there! We’re almost.
Gases expand, diffuse, exert pressure, and can be compressed because they are in a low-density state consisting of tiny, constantly moving particles. Section.
Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Chapter 5 Gases. Chapter 5  One of the most amazing things about gasses is that, despite wide differences in chemical properties, all gases more or less.
Chemistry Chapter 5 Gases Dr. Daniel Schuerch. Gas Pressure Gas pressure is the result of simultaneous collisions of billions of rapidly moving particles.
Gases Pressure (5.1) Gas Laws of Boyle, Charles, Avogadro (5.2) Ideal Gas Law (5.3) Gas Stoichiometry (5.4) Kinetic Molecular Theory (5.6) Effusion & Diffusion.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Unit 5: Gases and Gas Laws
Gas Laws.
Gases Courtesy of nearingzero.net.
One of the most amazing things about gasses is that , despite wide differences in chemical properties, all gases more or less obey the gas law. The gas.
PowerPoint Lecture Presentation by J
Gases Ideal Gas Law.
Gases Chapter 5.
Gas Laws.
Copyright©2000 by Houghton Mifflin Company. All rights reserved.
Chapter 11 Gas Laws.
Gases Chapter 5 Become familiar with the definition and measurement of gas pressure. Learn the gas law and ideal gas equation. Understand the concept of.
Gas Laws Chapter 10 CHEM140 February 2, 2005.
Gases Kinetic Theory of Ideal Gas, Gas Laws & Equation Combined Gas Laws, Numerical value of R.
Kinetic Molecular Theory
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Why study gases? An understanding of real world phenomena.
CHAPTER- 5: GASES Gas molecules in the wind provide the force to move these racing sailboats.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
(5) What mass of NaOH is required to react exactly with mL of 1
Gas Laws Chapter 10 CHEM140 February 2, 2005.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Copyright©2000 by Houghton Mifflin Company. All rights reserved.
GASES and the Kinetic Molecular Theory
Gases.
Presentation transcript:

Chapter V Gases

Gases Properties of a Gas: It has no fixed shape and volume. The earth’s atmosphere is a mixture of gases that consists mainly of elemental nitrogen (N2) and oxygen (O2). The gases in the atmosphere also shield us from harmful radiation from the sun and keep the earth warm by reflecting heat radiation back toward the earth. Properties of a Gas: It has no fixed shape and volume. The distance between gas atoms/molecules is larger as compared to particle size. Uniformly fills any container. Mixes completely with any other gas.

PRESSURE SI units of pressure = Newton/meter (N/m2) = 1 Pascal (Pa) 1 standard atmosphere = 101,325 Pa 1 standard atmosphere = 1 atm = 760 mm Hg = 760 torr

Barometer Device used to measure atmospheric pressure. Mercury flows out of the tube until the pressure of the column of mercury standing on the surface of the mercury in the dish is equal to the pressure of the air on the rest of the surface of the mercury in the dish. A device to measure atmospheric pressure, the barometer, was invented in 1643 by an Italian scientist named Evangelista Torricelli (1608–1647), who had been a student of Galileo.

5. 1. Ideal Gas Equation

PV = nRT PV (1 atm)(22.414L) R = = nT (1 mol)(273.15 K) The conditions 0 0C and 1 atm are called standard temperature and pressure (STP). Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L. PV = nRT R = PV nT = (1 atm)(22.414L) (1 mol)(273.15 K) R = 0.082057 L • atm / (mol • K)

5. 2. Stoichiometry of gaseous reaction

PV = nRT nRT V = P 1.37 mol x 0.0821 x 273.15 K V = 1 atm V = 30.6 L What is the volume (in liters) occupied by 49.8 g of HCl at STP? T = 0 0C = 273.15 K P = 1 atm PV = nRT n = 49.8 g x 1 mol HCl 36.45 g HCl = 1.37 mol V = nRT P V = 1 atm 1.37 mol x 0.0821 x 273.15 K L•atm mol•K V = 30.6 L

PV = nRT n, V and R are constant nR V = P T = constant P1 T1 P2 T2 = Argon is an inert gas used in lightbulbs to retard the vaporization of the filament. A certain lightbulb containing argon at 1.20 atm and 18 0C is heated to 85 0C at constant volume. What is the final pressure of argon in the lightbulb (in atm)? PV = nRT n, V and R are constant nR V = P T = constant P1 = 1.20 atm T1 = 291 K P2 = ? T2 = 358 K P1 T1 P2 T2 = P2 = P1 x T2 T1 = 1.20 atm x 358 K 291 K = 1.48 atm

Example: A sample of hydrogen gas (H2) has a volume of 8 Example: A sample of hydrogen gas (H2) has a volume of 8.56 L at a temperature of 0C and a pressure of 1.5 atm. Calculate the moles of H2 molecules present in this gas sample.

5.3. Gas mixture: partial pressure and mol fractions The total pressure of the mixture P total can be represented as:

Dalton’s Law of Partial Pressures V and T are constant P1 P2 Ptotal = P1 + P2

5.4. Postulates of the Kinetic Molecular Theory The gas particles are so small compared with the distances between them that the volume of the individual particles can be assumed to be negligible (zero). 2. The particles are in constant motion. The collisions of the particles with the walls of the container are the cause of the pressure exerted by the gas. 3. The particles are assumed to exert no forces on each other; they are assumed neither to attract nor to repel each other. 4. The average kinetic energy of the particles is proportional to the temperature of the gas in kelvins. Any two gases at the same temperature will have the same average kinetic energy.

(a) (b) (c) (a) A balloon filled with air at room temperature. (b) The balloon is dipped into liquid nitrogen at 77 K. (c) The balloon collapses as the molecules inside slow down due to the decreased temperature. Slower molecules produce a lower pressure.

Graham’s law of effusion Figure A. The effusion of a gas into an evacuated chamber. The rate of effusion (the rate at which the gas is transferred across the barrier through the pin hole) is inversely proportional to the square root of the molar mass of the gas molecules. The relative rates of effusion of two gases at the same temperature and pressure are given by the inverse ratio of the square roots of the molar masses of the gas particles: where M1 and M2 represent the molar masses of the gases. This equation is called Graham’s law of effusion.

Graham’s law of effusion Example: Calculate the ratio of the effusion rates of hydrogen gas (H2) and uranium hexafluoride (UF6). To calculate the molar masses: Molar mass of H2 2.016 g/mol, and molar mass of UF6 352.02 g/mol. Using Graham’s law, The effusion rate of the very light H2 molecules is about 13 times that of the massive UF6 molecules.

White ring of NH4Cl(s) forms where the NH3 and HCl meet. Conti. Two cotton plugs soaked in ammonia and hydrochloric acid are simultaneously placed at the ends of a long tube. A white ring of ammonium chloride (NH4Cl) forms where the NH3 and HCl molecules meet several minutes later: White ring of NH4Cl(s) forms where the NH3 and HCl meet.