Scientific Computing Lab

Slides:



Advertisements
Similar presentations
Lab Course CFD Preliminay Discussion Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Advertisements

Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
CSE Seminar Benefits of Hierarchy and Adaptivity Preliminary Discussion Dr. Michael Bader / Dr. Miriam Mehl Institut für Informatik Scientific Computing.
Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Practical Course SC & V Free Boundary Value Problems Prof. Dr. Hans-Joachim Bungartz Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
Reactive transport A COMPARISON BETWEEN SEQUENTIAL ITERATIVE AND GLOBAL METHODS FOR A REACTIVE TRANSPORT NUMERICAL MODEL J. Erhel INRIA - RENNES - FRANCE.
Partial Differential Equations
Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Introduction to COMSOL - Multiphysics Dheevatsa Mudigere Institut für Informatik Scientific Computing in Computer Science.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 20 Solution of Linear System of Equations - Iterative Methods.
Partial differential equations Function depends on two or more independent variables This is a very simple one - there are many more complicated ones.
Chapter 2 Solution of Differential Equations Dr. Khawaja Zafar Elahi.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Introduction to Scientific Computing II Molecular Dynamics – Introduction Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Math 3120 Differential Equations with Boundary Value Problems Chapter 4: Higher-Order Differential Equations Section 4-9: Solving Systems of Linear Differential.
Introduction to Scientific Computing II From Gaussian Elimination to Multigrid – A Recapitulation Dr. Miriam Mehl.
1 Spring 2003 Prof. Tim Warburton MA557/MA578/CS557 Lecture 31.
Elliptic PDEs and the Finite Difference Method
Introduction to Scientific Computing II Overview Michael Bader.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl.
Introduction to Scientific Computing II
Partial Derivatives Example: Find If solution: Partial Derivatives Example: Find If solution: gradient grad(u) = gradient.
Differential Equations Linear Equations with Variable Coefficients.
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Lab Course CFD Introduction Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Solving Partial Differential Equation Numerically Pertemuan 13 Matakuliah: S0262-Analisis Numerik Tahun: 2010.
The Application of the Multigrid Method in a Nonhydrostatic Atmospheric Model Shu-hua Chen MMM/NCAR.
14 - finite element method
Introduction to Differential Equations
Chapter 3 Linear Systems Review
EEE 431 Computational Methods in Electrodynamics
Partial Differential Equations and Applied Mathematics Seminar
Scientific Computing Lab
بسم الله الرحمن الرحيم.
Scientific Computing Lab
MultiGrid.
Iterative Methods Good for sparse matrices Jacobi Iteration
PARTIAL DIFFERENTIAL EQUATIONS
Introduction to Scientific Computing II
Pressure Poisson Equation
Solving Linear Systems Algebraically
Introduction to Scientific Computing II
finite element method node point based strong form
Introduction to Scientific Computing II
finite element method node point based strong form
Practical Course SC & V Discretization II AVS Dr. Miriam Mehl
Introduction to Scientific Computing II
Matrix Solutions to Linear Systems
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
State Space Method.
Partial Differential Equations
Scientific Computing Lab
Introduction to Scientific Computing II
Systems of Equations Solve by Graphing.
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Numerical Methods on Partial Differential Equation
Scientific Computing Lab
Spatial Discretisation
Programming assignment #1 Solving an elliptic PDE using finite differences Numerical Methods for PDEs Spring 2007 Jim E. Jones.
Home assignment #3 (1) (Total 3 problems) Due: 12 November 2018
Presentation transcript:

Scientific Computing Lab Institut für Informatik Scientific Computing in Computer Science Scientific Computing Lab Partial Differential Equations Stationary Equations Dr. Miriam Mehl

Stationary Partial Differential Equations independent variables: space coordinates boundary value problems no start and end

Discretization space grid functions operators large system of linear equations typically sparse finite difference/volume/element

Iterative Solution of Systems of Linear Equations point-by-point processing eliminate local residual iterate Gauss-Seidel solver exploit sparsity

More Information http://www.cse.tum.de/vtc/SciComp/ 3.3 Discretizing partial Differential Equations 3.5 Iterative Solution of Large Sparse Linear Systems