Spline Interpolation Method

Slides:



Advertisements
Similar presentations
Newton’s Divided Difference Polynomial Method of Interpolation
Advertisements

1 Direct Method of Interpolation Electrical Engineering Majors Authors: Autar Kaw, Jai Paul
5/19/ Runge 4 th Order Method Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
7/2/ Differentiation-Discrete Functions Industrial Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
7/2/ Backward Divided Difference Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati
8/8/ Euler Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
8/15/ Differentiation-Discrete Functions Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
8/15/ Binary Representation Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
1 Spline Interpolation Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
9/22/ Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
10/8/ Propagation of Errors Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
1 Lagrangian Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Chemical Engineering Majors Authors: Autar Kaw, Jai.
10/20/ Runge 2 nd Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Newton’s Divided Difference Polynomial Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw,
5/30/ Runge 4 th Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/17/ Shooting Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
11/30/ Secant Method Industrial Engineering Majors Authors: Autar Kaw, Jai Paul
1 Lagrangian Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1/16/ Runge 4 th Order Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1/19/ Runge 4 th Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Direct Method of Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
2/28/ Runge 4 th Order Method Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw,
1 Spline Interpolation Method Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
6/13/ Secant Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
Trapezoidal Rule of Integration
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Spline Interpolation Method
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Spline Interpolation Method
Direct Method of Interpolation
Lagrangian Interpolation
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton’s Divided Difference Polynomial Method of Interpolation
Trapezoidal Rule of Integration
Trapezoidal Rule of Integration
Spline Interpolation Method
Lagrangian Interpolation
Lagrangian Interpolation
Binary Representation
Industrial Engineering Majors Authors: Autar Kaw, Charlie Barker
Direct Method of Interpolation
Binary Representation
Newton’s Divided Difference Polynomial Method of Interpolation
Binary Representation
Chemical Engineering Majors Authors: Autar Kaw, Jai Paul
Lagrangian Interpolation
Lagrangian Interpolation
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Mechanical Engineering Majors Authors: Autar Kaw, Luke Snyder
Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Reading Between the Lines
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Lagrangian Interpolation
Presentation transcript:

Spline Interpolation Method Chemical Engineering Majors Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates http://numericalmethods.eng.usf.edu

Spline Method of Interpolation http://numericalmethods.eng.usf.edu

What is Interpolation ? Given (x0,y0), (x1,y1), …… (xn,yn), find the value of ‘y’ at a value of ‘x’ that is not given. http://numericalmethods.eng.usf.edu

Interpolants Evaluate Differentiate, and Integrate. Polynomials are the most common choice of interpolants because they are easy to: Evaluate Differentiate, and Integrate. http://numericalmethods.eng.usf.edu

Why Splines ? http://numericalmethods.eng.usf.edu

Figure : Higher order polynomial interpolation is a bad idea Why Splines ? Figure : Higher order polynomial interpolation is a bad idea http://numericalmethods.eng.usf.edu

Linear Interpolation http://numericalmethods.eng.usf.edu

Linear Interpolation (contd) http://numericalmethods.eng.usf.edu

Example To find how much heat is required to bring a kettle of water to its boiling point, you are asked to calculate the specific heat of water at 61°C. The specific heat of water is given as a function of time in Table 1. Use linear spline interpolation to determine the value of the specific heat at T = 61°C. Table 1 Specific heat of water as a function of temperature. Temperature, Specific heat, 22 42 52 82 100 4181 4179 4186 4199 4217 Figure 2 Specific heat of water vs. temperature. http://numericalmethods.eng.usf.edu

Linear Interpolation http://numericalmethods.eng.usf.edu

Quadratic Interpolation http://numericalmethods.eng.usf.edu

Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

Quadratic Splines (contd) http://numericalmethods.eng.usf.edu

Quadratic Splines (contd) http://numericalmethods.eng.usf.edu

Quadratic Splines (contd) http://numericalmethods.eng.usf.edu

Example To find how much heat is required to bring a kettle of water to its boiling point, you are asked to calculate the specific heat of water at 61°C. The specific heat of water is given as a function of time in Table 1. Use quadratic spline interpolation to determine the value of the specific heat at T = 61°C. Table 1 Specific heat of water as a function of temperature. Temperature, Specific heat, 22 42 52 82 100 4181 4179 4186 4199 4217 Figure 2 Specific heat of water vs. temperature. http://numericalmethods.eng.usf.edu

Solution http://numericalmethods.eng.usf.edu

Solution (contd) http://numericalmethods.eng.usf.edu

Solution (contd) http://numericalmethods.eng.usf.edu

Solution (contd) http://numericalmethods.eng.usf.edu

Solution (contd) http://numericalmethods.eng.usf.edu

Solution (contd) http://numericalmethods.eng.usf.edu

Better Estimate http://numericalmethods.eng.usf.edu

Better Estimate http://numericalmethods.eng.usf.edu

Better Estimate http://numericalmethods.eng.usf.edu

Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit http://numericalmethods.eng.usf.edu/topics/spline_method.html

THE END http://numericalmethods.eng.usf.edu