Mineralization of articular cartilage in the sprague-dawley rat: characterization and mechanical analysis  M.L. Roemhildt, B.D. Beynnon, M. Gardner-Morse 

Slides:



Advertisements
Similar presentations
Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT  Danika L.
Advertisements

Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study  F.W. Roemer, T. Neogi,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density  W.D. Burnett, S.A. Kontulainen,
2D and 3D MOCART scoring systems assessed by 9
Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation.
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation 
Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis  B.A. Christiansen, M.J. Anderson,
S. Ogawa, Y. Awaga, M. Takashima, A. Hama, A. Matsuda, H. Takamatsu 
Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular.
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography  D.D. McErlain, M.Sc., C.T.G. Appleton,
Cartilage MRI T2∗ relaxation time and perfusion changes of the knee in a 5/6 nephrectomy rat model of chronic kidney disease  C.-Y. Wang, Y.-J. Peng,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Experimental scoring systems for macroscopic articular cartilage repair correlate with the MOCART score assessed by a high-field MRI at 9.4 T – comparative.
NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co- glycolic acid composite improves repair of large osteochondral defects.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Low magnitude high frequency vibration accelerated cartilage degeneration but improved epiphyseal bone formation in anterior cruciate ligament transect.
Development and reliability of a multi-modality scoring system for evaluation of disease progression in pre-clinical models of osteoarthritis: celecoxib.
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT  Danika L.
Quantitative assessment of articular cartilage morphology via EPIC-μCT
Calcium phosphate particulates increase friction in the rat knee joint
Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo.
Attenuation of subchondral bone abnormal changes in osteoarthritis by inhibition of SDF-1 signaling  Y. Chen, S. Lin, Y. Sun, J. Guo, Y. Lu, C.W. Suen,
Changes in articular cartilage and posterior meniscus geometries after anterior cruciate ligament injury  D.R. Sturnick, M.G. Gardner-Morse, E.C. Argentieri,
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig  V.B. Kraus, J.L. Huebner, J. DeGroot,
Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover  R.H. Nielsen, A.-C.
Monoiodoacetic acid induces arthritis and synovitis in rats in a dose- and time- dependent manner: proposed model-specific scoring systems  M. Udo, T.
Differences in structural and pain phenotypes in the sodium monoiodoacetate and meniscal transection models of osteoarthritis  P.I. Mapp, D.R. Sagar,
Comparison of mechanical debridement and radiofrequency energy for chondroplasty in an in vivo equine model of partial thickness cartilage injury  R.B.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Histopathology grading systems for characterisation of human knee osteoarthritis – reproducibility, variability, reliability, correlation, and validity 
A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis  A.J. Ramme, M. Lendhey, J.G.
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis – part II: bone mineral density assessment  M. Bouchgua, D.M.V., K.
Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle  Y.-S.
Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilisation of the medial meniscus and increased joint laxity  J.P.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores  N.L.A. Fell, B.M. Lawless,
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
An experimental study on costal osteochondral graft
R. Takaishi, T. Aoyama, X. Zhang, S. Higuchi, S. Yamada, T. Takakuwa 
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Volumetric bone mineral density of the tibia is not increased in subjects with radiographic knee osteoarthritis  M. Abdin-Mohamed, M.B.B.S., M.R.C.P.,
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
R. Parekh, M.K. Lorenzo, S.Y. Shin, A. Pozzi, A.L. Clark 
Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography  N.J. Willett, T. Thote, M. Hart,
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
The prevalence of and factors related to calcium pyrophosphate dihydrate crystal deposition in the knee joint  K. Ryu, T. Iriuchishima, M. Oshida, Y.
Changes to the articular cartilage thickness profile of the tibia following anterior cruciate ligament injury  E.C. Argentieri, D.R. Sturnick, M.J. DeSarno,
Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and type 2 diabetes mellitus  C.Y. Wen, Y. Chen, H.L. Tang, C.H. Yan,
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
M. L. Roemhildt, B. D. Beynnon, A. E. Gauthier, M. Gardner-Morse, F
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Osteoarthritis year in review 2016: mechanics
W.J. Anderst, M.S., C. Les, D.V.M., Ph.D., S. Tashman, Ph.D. 
Presentation transcript:

Mineralization of articular cartilage in the sprague-dawley rat: characterization and mechanical analysis  M.L. Roemhildt, B.D. Beynnon, M. Gardner-Morse  Osteoarthritis and Cartilage  Volume 20, Issue 7, Pages 796-800 (July 2012) DOI: 10.1016/j.joca.2012.04.011 Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 A) Superior view of rat tibial plateau showing isosurface of reconstructed μCT image and areas of mineralization within the articular cartilage (◂), (B) Photograph of the same specimen in which areas of well-developed mineralizations appear as white spots on the articular surface (◂), (C) Representative backscattered electron image of a coronal section of the medial compartment of the tibia plateau illustrating the articular surface (ǂ), mineralized region of articular cartilage (→) and underlying subchondral bone, (D) Magnified image of mineralized region depicted in Panel C illustrating the mineralized area (*) and underlying calcified cartilage (#). Numbered points illustrate some of the points at which energy dispersive spectra were collected, (E) Representative energy dispersive spectra of two mineralized particles illustrating the main components of the mineralized regions are phosphorus (P), calcium (Ca) and oxygen (O) with minor traces of magnesium (Mg) and sodium (Na). Osteoarthritis and Cartilage 2012 20, 796-800DOI: (10.1016/j.joca.2012.04.011) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Coronal osteochondral sections showing representative cyst-like regions (◂) in the articular cartilage, which were mineralized prior to histological processing, stained with Hematoxylin and Eosin (A–D) and corresponding serial section below stained with SOFG (E–H). The substructure within these regions represent vestiges where large mineral deposits resided and coincide with mineralized regions as observed by μCT and surface white spots (Fig. 1 A-B). Little Safranin O staining was observed within cysts. Osteoarthritis and Cartilage 2012 20, 796-800DOI: (10.1016/j.joca.2012.04.011) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions