Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick

Slides:



Advertisements
Similar presentations
The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group,
Advertisements

(4C) N1 O2 O3 O4 O5 O6 H14 H13 H7 H8 H9 H10 H11 H12 (4F) N1 O2 O3 O4 O5 O6 H13 H14 H7 H8 H9 H10 H11 H12 Supplementary Figure1. Calculated structures of.
Microwave spectroscopy of the heavy-atom carbene analog HSiI and DSiI Lu Kang Southern Polytechnic State University Marietta, GA Mohammed A. Gharaibeh.
MONITORING REACTION PRODUCTS USING CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY Derek S. Frank, Daniel A. Obenchain, Wei Lin, Stewart E. Novick,
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
PURE ROTATIONAL SPECTRA OF THE REACTION PRODUCTS OF LASER ABLATED THORIUM METAL AND OXYGEN MOLECULES ENTRAINED WITHIN SUPERSONIC EXPANSIONS OF NOBLE GASES.
Extended Townes-Dailey Analysis II: Application to hybridized orbitals Columbus, 2010 TC 01 Nuclear Quadrupole Coupling Constants Stewart Novick Wesleyan.
Joseph A. Fournier, Robert K. Bohn, John A. Montgomery, Jr. University of Connecticut, Storrs, CT Microwave Spectroscopy and Structures of Perfluorohexane.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
The Rotational Spectra of Cyclohexene Oxide and Its Argon van der Waals Complex DANIEL J. FROHMAN, STEWART E. NOVICK AND WALLACE C. PRINGLE Wesleyan University.
Susanna L. Stephens, John Mullaney, Matt Sprawling Daniel P. Zaleski, Nick R. Walker, Antony C. Legon 69 th International Symposium on Molecular Spectroscopy,
The Rotational Spectrum and Hyperfine Constants of Arsenic Monophosphide, AsP Flora Leung, Stephen A. Cooke and Michael C. L. Gerry Department of Chemistry,
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SiNSi RADICAL II: IDENTIFICATIONS OF THE A2A1, B2B1, AND D2Sg+ STATES C. MOTOYOSHI, Y. SUMIYOSHI, Y. ENDO.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
72nd International Symposium on Molecular Spectroscopy, 6/20/2017
A COMPARISON OF THE MOLECULAR STRUCTURES OF C4H9OCH3, C4H9SCH3, C5H11OCH3, AND C5H11SCH3 USING MICROWAVE SPECTROSCOPY BRITTANY E. LONG, Chemistry Department,
Juliane Heitkämper, John C Mullaney, Nick Walker
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
Microwave and infrared spectra of urethane
The Pure Rotational Spectrum of KO
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
STEPHEN G. KUKOLICH, MING SUN, ADAM M. DALY University of Arizona
Stéphane Bailleux University of Lille
Characterisation and Control of Cold Chiral Compounds
Microwave Spectra and Structures of H4C2CuCl and H4C2AgCl
Carlos Cabezas and Yasuki Endo
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
Yoon Jeong Choi, Alex Treviño, Susanna L. Stephens, Stephen A
MICROWAVE OBSERVATION OF THE VAN DER WAALS COMPLES O2-CO
The CP-FTMW Spectrum of Bromoperfluoroacetone
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
NORMAN C. CRAIG and MICHAEL C
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
Rotational Spectra of Adducts of Pyridine with Methane and Its Halides
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Department of Chemistry
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Microwave spectra of Ar...AgI and H2O...AgI produced by laser ablation
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
Rotational Spectra of H2S Dimer: Observation of Ka =1 Lines
Microwave spectra of 1- and 2-bromobutane
Mahdi Kamaee and Jennifer van Wijngaarden
Millimeter-Wave Spectrum of Pyrimidine
Laser spectroscopy and ab initio calculations on TaF
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
The rotational spectrum of the urea isocyanic acid complex
Methylindoles – Microwave Spectroscopy
Nuclear Quadrupole Coupling in SiH2I2 Due to the Presence of Two Iodine Nuclei Discuss the Structural resolution of di-iodosilane using predictive methods.
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
LASER SPECTROSCOPY OF THE (ELUSIVE) JET-COOLED SiCF FREE RADICAL
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
John Mullaney Newcastle University
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
and analysis of hyperfine structure from four quadrupolar nuclei
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Sara E. Ray and Anne B. McCoy
Presentation transcript:

Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick Nitrogen splittings here, there, and everywhere: A Reinvestigation of the Electronic Properties of 2-Bromopyridine with High Resolution Microwave Spectroscopy Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick

High Resolution Microwave Spectroscopy and 2-bromopyridine

Predicted Rotational Spectrum of 2-bromopyridine assigned transitions 81BrC5H4N 79BrC5H4N

14N Hyperfine Structure * * 𝐽 𝐾 𝑎 ′′ 𝐾 𝑐 ′′ ′′ 𝐹 1 ′′ 𝐹 2 ′′ ← 𝐽 𝐾 𝑎 ′ 𝐾 𝑐 ′ ′ 𝐹 1 ′ 𝐹 2 ′ F1 = J + I1    (I1 = 3/2; spin of 79Br, 81Br)  F2 = F1 + I2   (I2 = 1; spin of 14N) *Caminati, W.; Forti, P. Chem. Phys. Lett. 1972, 15, 343349.

Spectroscopic Parameters of 79BrC5H4N from ab initio and experiments MP2/ 6-311++G(d,p) aug-cc-pVTZ (anharmonic) Caminati & Forti This work A0 /MHz 5886 5886* 5869.7(2) 5869.9333(16) B0 /MHz 1020 1030* 1026.139(3) 1026.14510(26) C0 /MHz 869 876* 873.377(2) 873.37532(20) DJ /kHz -- 0.02989* 0.0308(9) DJK /kHz 0.203* 0.203(11) DK /kHz 1.08* 1.52(39) d1 /Hz -5.3* -5.3(11) d2 /Hz -0.80* -0.81(19) 79Braa /MHz 553.65 474.72* 552.2(12) 551.750(27) 79Brbb /MHz -299.43 -262.12* -304.4(6) -304.172(21) 79Brcc /MHz -254.22 -212.60* -248.1(23) -247.578(32) |79Brab| /MHz 0.2885 -0.6896* 14Naa /MHz -0.0297 -0.15696* -0.085(12) 14Nbb /MHz -2.996 -2.9440* -3.005(12) 14Ncc /MHz 3.026 3.1009* 3.090(17) |14Nab|/MHz 2.946 -2.7806* 2.98(28) Nlines 44 172 RMS /kHz 50 2.5 *During the conference and in following communications we were clarified on an issue with our Gaussian calculations. Specifically that without the keyword “density=current” the calculation would run with the initial calculation wavefunction rather than the wavefunction of the specified theory level. The MP2/6-311G++(d,p) calculation presented here has been re-run, however  the MP2/aug-cc-pVTZ calculation is still in progress. We would like to thank Mark Marshall for his assistance. Caminati, W.; Forti, P. Chem. Phys. Lett. 1972, 15, 343349.

Spectroscopic Parameters of 2-bromopyridine 79BrC5H4N 81BrC5H4N Caminati & Forti This work A0 /MHz 5869.7(2) 5869.9333(16) 5869.9(3) 5869.9260(17) B0 /MHz 1026.139(3) 1026.14509(25) 1015.526(4) 1015.52827(28) C0 /MHz 873.377(2) 873.37532(20) 865.669(3) 865.67201(20) DJ /kHz -- 0.0308(9) 0.0304(10) DJK /kHz 0.203(11) 0.204(11) DK /kHz 1.53(39) 1.53(38) d1 /Hz -5.2(11) -5.2(12) d2 /Hz -0.81(19) -0.78(20) Braa /MHz 552.2(12) 551.750(23) 460.4(20) 460.899(23) Brbb /MHz -304.4(6) -304.172(19) -252.6(7) -254.098(21) Brcc /MHz -248.1(23) -247.578(32) -207.9(33) -206.801(32) 14Naa /MHz -0.085(12) -0.090(12) 14Nbb /MHz -3.005(12) -3.001(12) 14Ncc /MHz 3.090(17) 3.091(17) 14Nab /MHz -2.99(28) -2.73(34) Nlines 44 172 173 RMS /kHz 50 2.5 Caminati, W.; Forti, P. Chem. Phys. Lett. 1972, 15, 343349.

Structural Parameters for 2-bromopyridine MP2/ 6-311++G(d,p) aug-cc-pVTZ Caminati & Forti This work C-Br Bond Length r0 /Å 1.903 1.890 1.88(1) 1.8983(39) Br NQC Asymmetry Parameter a (79BrC5H4N, 81BrC5H4N) -0.0817, -0.0817 -0.1043*, -0.1054* -0.102(4), -0.097(7) -0.1026(5), -0.1026(5) a is a measure of the asymmetry of the nuclear quadrupole coupling tensor, where  = 𝜒 𝑏𝑏 − 𝜒 𝑐𝑐 𝜒 𝑎𝑎 *During the conference and in following communications we were clarified on an issue with our Gaussian calculations. Specifically that without the keyword “density=current” the calculation would run with the initial calculation wavefunction rather than the wavefunction of the specified theory level. The MP2/6-311G++(d,p) calculation presented here has been re-run, however  the MP2/aug-cc-pVTZ calculation is still in progress. We would like to thank Mark Marshall for his assistance. Caminati, W.; Forti, P. Chem. Phys. Lett. 1972, 15, 343349.

Pyridine vs. 2-bromopyridine Structural Analysis MP2/aug-cc-pVTZ results /Å pyridine 2-bromopyridine r1 1.341 1.325 C-H1 1.084 1.082 r2 1.343 C-H2 1.080 r3 1.393 1.390 C-H3 1.081 r4 1.391 C-H4 1.079 r5 1.389 C-H5 -- r6 1.394 C-Br5 1.890

Reinvestigation of 2-bromopyridine: Anticipating work

Acknowledgements Daniel A. Obenchain Wallace (Pete) Pringle Stephen A. Cooke Susanna Stephens Wilman Orellana Eric A. Arsenault Angela Y. Chung Yoon Jeong Choi Stewart E. Novick Novick Group *not pictured above: Robert Melchreit