Unit 2. Day 5..

Slides:



Advertisements
Similar presentations
Lesson 4-4 Example Example 1 1.Change each decimal to a fraction. Order, 0.5,, and –0.8 from least to greatest. Graph the numbers on a number line.
Advertisements

Workshop Lesson 3: Terminating & Repeating Decimals 7 th Grade.
Real Numbers and The Number Line
Rational and Irrational Numbers
Take out homework and have it ready to be checked!!!
Objective - To recognize, graph, and compare rational numbers. Rational Number - any number that can be written as a fraction. including decimals... including.
Rational Numbers and Decimals
Fractions & Decimals.
Fractions and Decimals Chapter 3 Section 1. Rational Numbers  Terminating Decimal – a decimal that ends.  Repeating Decimal – a decimal that has a digit.
NOTES 2.1 Rational Numbers VOCAB: rational number: is a number that can be written as the ratio of two integers. (a fraction) terminating decimal: is a.
Fractions and Decimals
Ordering fractions, decimals and percents. Arrange the following fractions, decimals and percents in order from least to greatest ⅔, 0.6, 0.67 and 65%
Lesson 9-2 Pages The Real Number System Lesson Check 9-1.
Ordering Fractions and Decimals. Steps:  Change all decimals to fractions by dividing  Write all decimals vertically aligning the decimal  Begin comparing.
Changing Decimals to Fractions
2-7 Rational Numbers Rational Number- A number that can be written as a fraction Ex: Write four more examples of rational numbers.
2-1 (C) Comparing and Ordering Integers. Vocabulary Rational Number – a number that can be expressed as a fraction. Ex: %4 ½ 4.8.
Vocabulary. Rational Number Most numbers are rational. It is a number whose decimal expansion eventually terminates or repeats. – What does it mean to.
Vocabulary Chapter 4 unlike fractions unlike fractions terminating decimal - I will give you the definition for this one!! terminating decimal - I will.
9-2 Extension: Negative Rational Numbers Lesson Presentation Lesson Presentation.
Warm-up #8Ch 2 Write in order least to greatest 1) 4, -6, 31, 0, -9 2) 14, 0, -4, -1, 3 = Replace each  with =, 3) -5  -1 4) 0  -7 5.) Evaluate 12.
Decimal to Fraction  To change a decimal to a fraction, take the place value and reduce!  0.5 means 5 tenths, so 5/10.  Now reduce 5/10 = ½  0.5 =
Name the set(s) of numbers to which each number belongs. a. –13b integers rational numbers ALGEBRA 1 LESSON 1-3 Exploring Real Numbers 1-3.
4-1 Converting Fractions to Decimals. Convert to decimals a) 25/100 = ________ b) ½ (use long division) c) - 1/40 (use long division)
Repeating decimals – How can they be written as fractions? is a rational number.
Method 1 Compare – and –. COURSE 2 LESSON Since – is farther to the left on the number line, it is the lesser number So, – > –
Fractions and Decimal Fractions Fractions Decimal Fractions
Problem of the Day Fractions, Decimals, Percents.
5-2 Fractions and Decimals
Converting repeating decimals to fractions
Unit 2. Day 4..
Terminating and Repeating Decimals
Lesson 2.1 Rational Numbers
Unit 2. Day 10..
Percents, Fractions, and Decimals
Unit 2. Day 1..
ratio ratio repeat terminate repeat terminate
Unit 1. Day 8..
Unit 1. Day 2..
Unit 1. Day 5..
Unit 1. Day 7..
Unit 2. Day 7..
Math 2-2: Warm-up Write each fraction or mixed number as a decimal.
Unit 3. Day 1..
Exponents & Radicals Day 3
Unit 2. Day 4..
Changing Fractions to Decimals Guided Notes
Unit 2. Day 4..
Chapter 3 Test Review.
Unit 2. Day 5..
Lesson 2 MGSE8.NS.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for.
Unit 2. Day 11..
Unit 2. Day 7..
Comparing and Ordering Rational Numbers Guided Notes
Unit 2. Day 14..
Unit 1. Day 9..
Unit 2. Day 14..
Unit 2. Day 10..
Unit 2. Day 13..
Convert a TERMINATING DECIMAL to a FRACTION
Unit 3. Day 3..
Unit 2. Day 8..
Unit 2. Day 12..
Warm-Up Lesson 11 hw questions? Lesson 12 Exit card
Exercise Use long division to find the quotient. 180 ÷ 15.
Essential Question: How do you compare and order real numbers?
Take out homework and have it ready to be checked!!!
Lesson 2 MGSE8.NS.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for.
L5-7 Notes: Fractions as Decimals
Equivalent Forms of Rational Numbers
Presentation transcript:

Unit 2. Day 5.

Please get out paper for today’s lesson Name Date Period -------------------------------------------------------- Topic: Comparing & Ordering rational numbers 7.NS.A.2.d Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.

Today’s Lesson Comparing & Ordering Rational Numbers a) Decimals b) Fractions

Example A: Use <, >, 𝑜𝑟= to compare each pair of decimals. > 0.36 0.329

Example B: Use <, >, 𝑜𝑟= to compare each pair of decimals. > −16.117 −16.171

Example C: Use <, >, 𝑜𝑟= to compare each pair of decimals. = 25.72 25.720

Use <, >, 𝑜𝑟= to compare each pair of decimals. −0.108 −0.10800 = Example D: 0.4 3 0.4 31 3 3 > 3 1 Example E: −1.80111 −1.80101 < Example F:

Today’s Lesson Comparing & Ordering Rational Numbers a) Decimals b) Fractions

Example G: Replace each with <, >, or = to make a true sentence. − 5 8 − 7 12 − 5 8 − 7 12 < − 14 24 − 15 24 < 8 12 . − . 6 2 5 − 5 8 3 . 5 : 8 . 12 7 8 , 16 , 24 , 32 , 40 , 48 − 48 − 60 2 10 − 16 − 96 : 4 4 12 , 24 , 36 , 48 − 40 − 36 4

Replace each with <, >, or = to make a true sentence. 5 7 3 4 Example H*: − 7 8 − 11 13 Example I*:

Example H*: Replace each with <, >, or = to make a true sentence. 5 7 3 4 5 7 3 4 < 20 28 21 28 < 7 4 . . 7 1 4 7 5 . . : 7 5 4 3 7 , 14 , 21 , 28 − 49 − 2 8 1 2 − 7 − 20 : 3 4 , 8 , 12 , 16 , 20 , 24 , 28 − 28 2

Example I*: Replace each with <, >, or = to make a true sentence. − 7 8 − 11 13 − 7 8 − 11 13 < − 91 104 − 88 104 < 8 13 . − . 8 7 5 − 8 4 6 . 7 . : 8 13 11 8 , 16 , 24 , 32 , 40 , 48 , 56 − 64 − 104 64 , 72 , 80 , 88 , 96 , 104 6 6 − 56 − 52 : 4 8 13 , 26 , 39 , 52 , 65 , 78 , − 40 − 78 91 , 104 2

Comparing Fractions Ordering Fractions 5 9 7 12 > < > < = 2 3 , 9 13 , 1 2 , 5 8 2 3 9 13 1 2 5 8 5 9 7 12 > < > < = =

Example J: Order the fractions from least to greatest. − 1 2 , − 9 14 , − 3 4 , − 5 7 − 1 2 − 9 14 − 3 4 − 5 7 −0.5 −0.642 −0.75 −0.714 . . . . 5 6 4 2 7 5 7 1 4 . . . . 2 1 14 9 4 3 7 5 − 10 − 84 − 28 − 49 6 2 1 − − − 56 20 7 4 3 − 28 − 28 12 2

Example J: Order the fractions from least to greatest. − 1 2 − 1 2 , − 9 14 ,− 3 4 ,− 5 7 − 9 14 − 3 4 − 5 7 − 3 4 − 5 7 − 9 14 − 1 2 2 14 4 7 − 14 28 − 18 28 − 21 28 − 20 28 : 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , 26 , 28 : 14 , 28 , 42 , 56 : 4 , 8 , 12 , 16 , 20 , 24 , 28 , 32 , 36 : 7 , 14 , 21 , 28

Example K*: Order the fractions from least to greatest. − 5 6 , − 7 8 ,− 9 12 ,− 11 16 − 5 6 − 7 8 − 9 12 − 11 16 −0.833 −0.875 −0.75 −0.687 . . . . 8 3 3 8 7 5 7 5 6 8 7 . . . . 6 5 8 7 12 9 16 11 − 48 − 64 − 84 − 96 2 6 6 14 − − 18 − − 56 60 128 2 4 12 − 18 − 40 − 112 2 8

Example K*: Order the fractions from least to greatest. − 5 6 − 5 6 , − 7 8 ,− 9 12 ,− 11 16 − 7 8 − 9 12 − 11 16 6 8 12 16 − 7 8 − 5 6 − 9 12 − 11 16 − 40 48 − 42 48 − 36 48 − 33 48 : 6 , 12 , 18 , 24 , 30 , 36 , 42 , 48 , 54 , 60 , 66 , 72 , 78 , 84 : 8 , 16 , 24 , 32 , 40 , 48 , 56 , 64 , 72 , 80 , 88 , 96 : 12 , 24 , 36 , 48 , 60 , 72 , 84 , 96 , 108 : 16 , 32 , 48 , 64