Source :Journal of visual Communication and Image Representation

Slides:



Advertisements
Similar presentations
1 Adjustable prediction-based reversible data hiding Authors: Chin-Feng Lee and Hsing-Ling Chen Source: Digital Signal Processing, Vol. 22, No. 6, pp.
Advertisements

A Secret Information Hiding Scheme Based on Switching Tree Coding Speaker: Chin-Chen Chang.
Steganography of Reversible Data Hiding Producer: Chia-Chen Lin Speaker: Paul 2013/06/26.
A New Dynamic Finite-State Vector Quantization Algorithm for Image Compression Jyi-Chang Tsai, Chaur-Heh Hsieh, and Te-Cheng Hsu IEEE TRANSACTIONS ON IMAGE.
Fast vector quantization image coding by mean value predictive algorithm Authors: Yung-Gi Wu, Kuo-Lun Fan Source: Journal of Electronic Imaging 13(2),
1 Reversible data hiding for high quality images using modification of prediction errors Source: The Journal of Systems and Software, In Press, Corrected.
Adjustable prediction-based reversible data hiding Source: Authors: Reporter: Date: Digital Signal Processing, Vol. 22, No. 6, pp , 2012 Chin-Feng.
1 An Efficient VQ-based Data Hiding Scheme Using Voronoi Clustering Authors:Ming-Ni Wu, Puu-An Juang, and Yu-Chiang Li.
Reversible image hiding scheme using predictive coding and histogram shifting Source: Authors: Reporter: Date: Signal Processing, Vol.89, Issue 6, pp ,
1 Information Hiding Based on Search Order Coding for VQ Indices Source: Pattern Recognition Letters, Vol.25, 2004, pp.1253 – 1261 Authors: Chin-Chen Chang,
1 資訊隱藏技術之研究 The Study of Information Hiding Mechanisms 指導教授: Chang, Chin-Chen ( 張真誠 ) 研究生: Lu, Tzu-Chuen ( 呂慈純 ) Department of Computer Science and Information.
Palette Partition Based Data Hiding for Color Images Yu-Chiang Li, Piyu Tsai, Chih-Hung Lin, Hsiu-Lien Yeh, and Chien-Ting Huang Speaker : Yu-Chiang Li.
Reporter :Chien-Wen Huang Date : Information Sciences, Vol. 176, No. 22, Nov. 2006, pp Received 29 December 2004; received in revised.
Advisor: Chang, Chin-Chen Student: Chen, Chang-Chu
基於(7,4)漢明碼的隱寫技術 Chair Professor Chin-Chen Chang (張真誠)
基於龜殼魔術矩陣的隱寫技術及其衍生的研究問題
(k, n)-Image Reversible Data Hiding
Palette Partition Based Data Hiding for Color Images
A Secret Information Hiding Scheme Based on Switching Tree Coding
Source: The Journal of Systems and Software, Volume 67, Issue 2, pp ,
Data Mining and Its Applications to Image Processing
An Information Hiding Scheme Using Sudoku
Chapter 3 向量量化編碼法.
A New Image Compression Scheme Based on Locally Adaptive Coding
Advisor: Chin-Chen Chang1, 2 Student: Yi-Hui Chen2
Image camouflage by reversible image transformation
Reversible Data Hiding in JPEG Images using Ordered Embedding
Source : Signal Processing, Volume 133, April 2017, Pages
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
Chair Professor Chin-Chen Chang Feng Chia University
Reversible data hiding scheme based on significant-bit-difference expansion Sourse: IET Image Processing ( Volume: 11, Issue: 11, ), Pages 1002.
Chair Professor Chin-Chen Chang Feng Chia University
High-capacity image hiding scheme based on vector quantization
Advisor: Chin-Chen Chang1, 2 Student: Wen-Chuan Wu2
指導教授: Chang, Chin-Chen (張真誠)
New Framework of Reversible Data Hiding in Encrypted JPEG Bitstreams
A Data Hiding Scheme Based Upon Block Truncation Coding
第七章 資訊隱藏 張真誠 國立中正大學資訊工程研究所.
Hiding Data in a Color Palette Image with Hybrid Strategies
Advisor: Chin-Chen Chang1, 2 Student: Yi-Pei Hsieh2
Source : Signal Processing, vol. 126, pp ,  November 2016
Reversible Data Hiding Scheme Using Two Steganographic Images
Advisor:Prof. Chin-Chen Chang Student :Kuo-Nan Chen
Density-Based Image Vector Quantization Using a Genetic Algorithm
An efficient reversible image authentication method using improved PVO and LSB substitution techniques Source : Signal Processing: Image Communication,
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Information Steganography Using Magic Matrix
Source : Journal of Visual Communication and Image Representation, vol
Dynamic embedding strategy of VQ-based information hiding approach
Chair Professor Chin-Chen Chang Feng Chia University
Hung, K. -L. and Chang, C. -C. , IEE Image and Signal Processing, vol
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
Hiding Information in VQ Index Tables with Reversibility
Information Hiding and Its Applications
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Source : Journal of Visual Communication and Image Representation, vol
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
一種兼顧影像壓縮與資訊隱藏之技術 張 真 誠 國立中正大學資訊工程學系 講座教授
Multi-Tier and Multi-Bit Reversible Data Hiding with Contents Characteristics Source : Journal of Information Hiding and Multimedia Signal Processing, Volume.
Source: J. Vis. Commun. Image R. 31 (2015) 64–74
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
A Data Hiding Scheme Based Upon Block Truncation Coding
Source: Pattern Recognition, Volume 40, Issue 2, February 2007, pp
Predictive Grayscale Image Coding Scheme Using VQ and BTC
Author :Ji-Hwei Horng (洪集輝) Professor National Quemoy University
Information Hiding Techniques Using Magic Matrix
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
A New Image Compression Scheme Based on Locally Adaptive Coding
Hiding Information in VQ Index Tables with Reversibility
Presentation transcript:

Novel reversible data hiding scheme for Two-stage VQ compressed images based on search-order coding Source :Journal of visual Communication and Image Representation Volume 50, January 2018, Pages 186-198 Authors : Zhibin Pan, Lingfei Wang Speaker : Chia-Shuo Shih Date : 2017/12/21 1

Outline Introduction Proposed method Experimental results Conclusions Vector-quantization (VQ) Side-match vector quantization (SMVQ) Search-order coding (SOC) Reversible data hiding based on SOC Proposed method Experimental results Conclusions 2

Introduction --- Vector Quantization (VQ) VQ is a lossy image coding technique. VQ consists of three procedures: Codebook design Image Encoding Image Decoding [34] Y. Linde, A. Buzo, R. Gray, “Algorithm for Vector Quantizer Design”, IEEE Transactions on Communications, vol. 28, no. 1, pp: 84-95, 1980. 3

Introduction --- Vector Quantization (VQ) Image Encoding Partition the image into non-overlapped image block Find the closest codeword in the codebook for each image block x The index of the closest codeword of x is recorded. Image Decoding Reconstruct each block by the codeword in the codebook of its index. 4

Introduction --- Vector Quantization (VQ) Codebook 5

Introduction --- Side Match Vector Quantization(SMVQ) State Codebook (SC) 0 135,135,……134 1 136,136,……135 2 3 . 31 . [20] T. Kim, “Side match and overlap match vector quantizers for Images”. IEEE Transactions on Image Processing, vol. 1, no. 2, pp: 170~185, Apr. 1992. 6

VQ vs SMVQ VQ SMVQ Quality Better( ) Worse Bit rate Higher Lower( ) 7

Introduction --- Search Order Coding (SOC) 30  (00) 21  (01) 31  (10) 18  (11) 30  (00) 21  (01) 31  (10) 18  (11) 31 29 = 010 = 100011101 C.H. Hsieh, J. C. Tsai, “Lossless compression of VQ index with search-order coding”. IEEE Transactions on Image Processing, vol. 5, no. 11, pp: 1579 ~ 1582, 1996. 8

Introduction --- Reversible Data Hiding based on SOC 18 (OIV) 21 31 30 (SOC) 29 32 18 (OIV) 21 (SOC) 31 30 29 32 101101 1 100010010 100010010 100010101 01100010101 1 100011111 100011111 1 100011110 100011110 000 000 1 010 100011111 9

Proposed method preceding operation: First-stage: Codebook C Second-stage: Difference Codebook DC 10

Proposed method n n VQ VQ 11

Proposed method -- Side-match vector quantization (SMVQ) 2/2 State Codebook SC 0 135,135,135,134 1 136,136,136,135 2 . 3 . . . . 155,155,154,153 . 31 U (w-1,0) (w-1,1) 155 183 185 154 184 98 99 120 122 123 (w-1,0) (w-1,1) 155 154 l (0,h-1) (1,h-1) (0,h-1) (1,h-1) 12

Proposed method 13 First codeword in SC U 155 183 185 154 184 98 99 120 122 123 Difference image block 155,155,154,153 182,183,183,182 99,99,99,99 120,121,122,120 1 2 -1 l (0,h-1) (1,h-1) State Codebook SC 13

Proposed method . 14 Difference image block Difference codebook DC Two-stage VQ index table 1 2 -1 0 0,0,0,0 1 2,2,-2,-2 2 3,3,-3,-3 3 . 31 1 Encoded by . 14

Proposed method 00 10 001 00100 100100 10010010 Secret data (01) 3 (10) (00) Secret data 001 00 00100 1 3 2 4 (01) 1 (10) 2 (00) 4 Secret data 10 100100 10010010 15

Experimental results Table 1. The results of amount of SOC indices between Chang and the poposed scheme (codebook size = 256). Chang’s scheme  Our proposed scheme Improvement Lena 8307 9896 19.1% Baboon 2944 3517 19.5% Airplane 10,177 10111 – Boat 8592 9109 6% Peppers 8739 9065 3.8% Lake 7541 7737 2.6% Goldhill 6653 9105 36.9% Zelda 7642 8978 17.5% Average 7146 8278 15.8% 16

Experimental results Table 2. The comparison of compression rate (CR) between other listed schemes and our proosed scheme (unit: bpp, codebook size = 256). Chang et al.  Kieu et al.  Lee et al.  Lin et al. Pan et al. Proposed scheme Lena 0.378 0.367 0.373 0.342 0.358 0.336 Baboon 0.495 0.467 0.496 0.468 0.482 Airplane 0.330 0.327 0.333 0.321 0.324 0.331 Boat 0.366 0.362 0.364 0.359 0.354 Peppers 0.361 0.360 0.355 Lake 0.390 0.391 0.394 0.384 0.386 0.385 Goldhill 0.410 0.398 0.395 0.363 0.403 Zelda 0.388 0.357 Average 0.383 0.370 0.369 17

Experimental results Table 11. The omparison of maximum embedding rate (ER) between other listed schemes and our proposed scheme (unit: bpi, codebook size = 256). Chang et al.  Kieu et al.  Lee et al.  Lin et al.  Pan et al.  Proposed scheme Lena 1.95 2.13 2.03 2.53 2.27 2.62 Baboon 0.08 0.53 0.06 0.54 0.29 Airplane 2.72 2.77 2.67 2.86 2.82 2.70 Boat 2.14 2.21 2.18 2.26 2.34 Peppers 2.22 2.24 2.32 Lake 1.76 1.74 1.70 1.86 1.82 1.84 Goldhill 1.44 1.63 1.68 2.19 1.56 Zelda 1.79 2.29 Average 1.87 2.08 1.88 2.09 18

Experimental results Table 13. The comparison of maximum embedding efficiency (EE) between othr listed schemes and our proposed scheme (codebook size = 256). Chang et al.  Kieu et al.  Lee et al. Lin et al. Pan et al. Chang et al. Proposed scheme Lena 0.244 0.266 0.254 0.316 0.283 0.328 Baboon 0.010 0.066 0.008 0.068 0.036 Airplane 0.340 0.346 0.334 0.358 0.352 0.338 Boat 0.268 0.276 0.273 0.282 0.293 Peppers 0.278 0.280 0.290 Lake 0.220 0.218 0.213 0.232 0.228 0.230 Goldhill 0.180 0.204 0.210 0.274 0.195 Zelda 0.224 0.272 0.286 Average 0.234 0.260 0.235 0.261 19

Experimental results 20 Scheme Chang et al. Kieu et al. Lee et al. Table 10. Running time results of simulated schemes (unit: s, codebook size = 256). Scheme Chang et al.  Kieu et al.  Lee et al.  Lin et al.  Pan et al.  Proposed scheme Embedding phase 3.61 3.71 3.82 4.23 3.63 25.71 25.33 Extracting phase 0.85 0.71 0.91 0.75 1.05 24.42 23.92 Total time 4.46 4.42 4.73 4.98 4.68 50.13 49.25 20

Conclusions Better quality of reconstructed image. Better compression performance. The correlation of Two-stage VQ indices is better than that of VQ indices. 21

-END- 22