Millimeter-Wave Spectrum of Pyrimidine

Slides:



Advertisements
Similar presentations
A fitting program for molecules with two equivalent methyl tops and C 2v point-group symmetry at equilibrium: Application to existing microwave, millimeter,
Advertisements

Cristina PUZZARINI Dip. di Chimica “G. Ciamician”, Università di Bologna QUANTUM-CHEMICAL CALCULATIONS of SPECTROSCOPIC PARAMETERS for ROTATIONAL SPECTROSCOPY:
Submillimeter-wave Spectroscopy of 13 C 1 -Methyl formate [H 13 COOCH 3 ] in the Ground State Atsuko Maeda, Ivan Medvedev, Eric Herbst, Frank C. De Lucia,
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
The complete molecular geometry of salicyl aldehyde from rotational spectroscopy Orest Dorosh, Ewa Białkowska-Jaworska, Zbigniew Kisiel, Lech Pszczółkowski,
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Synchrotron-Based High Resolution Spectroscopy of N-Bearing PAHs Sébastien Gruet, Olivier Pirali, Manuel Goubet and P. Bréchignac ISMS /06/2014.
Rotational spectroscopy of ethylamine into the THz Zbigniew Kisiel, Adam Kraśnicki Institute of Physics, Polish Academy of Sciences Ivan R. Medvedev, Christopher.
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Copyright All rights reserved. June 25, 2015ISMS, 2015
ABSOLUTE 17 O NMR SCALE: a JOINT ROTATIONAL SPECTROSCOPY and QUANTUM-CHEMISTRY STUDY Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G.
OSU-05 TA 101 The Structure of Ethynylferrocene using Microwave Spectroscopy. Ranga Subramanian, Chandana Karunatilaka, Kristen Keck and Stephen Kukolich.
June 22-26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of TiS (X 3  r ) in all Three Spin Components Robin.
Laboratory of Millimetre-wave Spectroscopy of Bologna The ROTATIONAL SPECTRUM of HDO : ACCURATE SPECTROSCOPIC and HYPERFINE PARAMETERS G. Cazzoli*, V.
Analysis of High Resolution Infrared Spectra of 1,1-Dichloroethylene in the 500 − 1000 cm −1 Range Rebecca A. Peebles, Sean A. Peebles Department of Chemistry.
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
Fast Sweeping Direct Absorption (sub)Millimeter Spectroscopy Based on Chirped Pulse Technology Brian Hays 1, Steve Shipman 2, Susanna Widicus Weaver 1.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
The complete rotational spectrum of CH 3 NCO up to 376 GHz Zbigniew Kisiel, a Lucie Kolesnikova, b Jose L. Alonso, b Ivan R. Medvedev, c Sarah Fortman,
FAST SCAN SUBMILLIMETER SPECTROSCOPIC TECHNIQUE (FASSST). IVAN R. MEDVEDEV, BRENDA P. WINNEWISSER, MANFRED WINNEWISSER, FRANK C. DE LUCIA, DOUGLAS T. PETKIE,
Millimeter-wave Rotational Spectrum of Deuterated Nitric Acid Rebecca A.H. Butler, Camren Coplan, Department of Physics, Pittsburg State University Doug.
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Analysis of the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics, Polish Academy of Sciences Ivan R. Medvedev,
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Juliane Heitkämper, John C Mullaney, Nick Walker
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
Microwave and infrared spectra of urethane
Pure rotational spectrum of the “non-polar” dimer of Formic acid
The microwave spectroscopy of ground state CD3SH
MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES V. Ilyushin1, I. Armieieva1, O. Dorovskaya1,
Stéphane Bailleux University of Lille
Department of Chemistry, University of Wisconsin, Madison
63rd OSU International Symposium on Molecular Spectroscopy FC01
1Kanagawa Institute of Technology 3Georgia Southern University
International Symposium on Molecular Spectroscopy
IR and Raman spectra of N2H2
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
Millimeter-wave spectroscopy of formyl azide (HC(O)N3)
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
THE MILLIMETER-WAVE SPECTRUM OF VINYL ACETATE
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Acetaldehyde: Into the Submillimeter
Indirect Rotational Spectroscopy of HCO+
The n17 band of C2H5D from cm-1
Department of Chemistry, University of Wisconsin, Madison
G. S. Grubbs IIa, Derek S. Frankb, Daniel A. Obenchainb, S. A
The Rotational Spectrum of cis- and trans-HSSOH
The Three-dimensional Potential Energy
Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick
Tie-Dyed McMahon Group Members
A. Jabri, I. Kleiner, L. Margulès, R. Motyenko, J-C. Guillemin, E. A
Millimeter-Wave Spectroscopy of Phenyl Isocyanate
62nd OSU International Symposium on Molecular Spectroscopy WG10
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
John Mullaney Newcastle University
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Millimeter-Wave Spectrum of Pyrimidine Zachary N. Heim, Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin-Madison June 22, 2015

Background Equilibrium structure yet to be fully determined 2 Background Pyrimidine 0 kcal/mol (B3LYP/6-31G(d)) mB=2.28 D Equilibrium structure yet to be fully determined Not yet unambiguously identified in the interstellar medium Most stable in family of 6-member dinitrogen heterocycles Biologically relevant molecule A B C Caffeine Uracil Thymine Cytosine Pyridazine ~22.7 kcal/mol B3LYP/6-31G(d) Pyrazine ~4.1 kcal/mol B3LYP/6-31G(d) B. J. Esselman, B. K. Amberger, J. D. Shutter, M. A. Daane, J. F. Stanton, R. C. Woods, and R. J. McMahon, “Rotational spectroscopy of pyridazine and its isotopologs from 235-360 GHz: Equilibrium structure and vibrational satellites,” J. Chem. Phys. 139, 224304 (2013); doi: 10.1063/1.4832899. Z. Kisiel, L. Pszczolkowski, I. R. Medvedev, M. Winnewisser, F. C. De Lucia, E. Herbst, J. Mol. Spectrosc. 233, 231-243 (2005). G. L. Blackman, R. D. Brown, F. R. Burden, J. Mol. Spectrosc. 35, 444-454 (1970). W. Caminati, D. Damiani, Chem. Phys. Lett. 179, 460-462 (1991). Charnley, S., Ehrenfreund, P., & Kuan, Y.-J. 2001, Spectrochim. Acta A, 57, 685

The Instrument and Experiment 3 The Instrument and Experiment Produce tone-burst modulated radiation up to 360 GHz (nominally 270-360 GHz) 10 cm diameter by 3m long absorption cell Controlled by software made in LabVIEW2010 Commercially available sample Room Temperature (298 K)

Initial Spectrum Collected 4 Initial Spectrum Collected 13C and 15N Isotopologues Main Isotopologue

5 Main Isotopologue 29 28 27 26 26 30 32 34 36 38 40 42 J’=44 ν11 = 391.3 cm-1 29 28 27 26 26 30 32 34 36 38 40 42 J’=44 ν16 = 342.6 cm-1 J’=57 55 53 51 49 47 45 Q-branch, ν0 R-branch, ν0 J’=44 J’=44 32 32 30 28 26

Experimental and Computational Alphas 6 Experimental and Computational Alphas Mode Frequency (cm-1) aA (MHz) Comp aB (MHz) aC (MHz) Exp Nlines sfit n16 342.63 -5.977 0.740 3.820 -5.953 0.685 3.897 1754 0.0303 n11 391.28 -2.403 -5.084 3.072 -2.448 -5.151 3.127 1679 0.0302 n24 619.04 3.803 -5.507 -9.389 3.766 -6.136 -9.598 363 0.0249 Calculated with an anharmonic frequency VPT2 calculation at CCSD(T)/ANO1

Complications of Turnarounds 7 Complications of Turnarounds J’=57 56 55 54 53 48 49 50 51 52 45 46 47 44 43 42 41 40

Main Isotopologue13C and 15N Isotopologues Sextic S-reduced Hamiltonian Representation IIIr 8 C4H4N2 [2-13C] [4-13C] [5-13C] [1-15N] A0 (MHz) 6276.82717 (21) 6152.67912 (47) 6256.09754 (20) 6132.81825 (31) 6253.95862 (46) B0 (MHz) 6067.16469 (23) 6067.53971 (44) 5957.21874 (20) 6067.35941 (27) 5954.15093 (51) C0 (MHz) 3084.44822 (34) 3054.25189 (60) 3050.84589 (27) 3049.30527 (19) 3049.53055 (71) DJ (kHz) 1.47123(20) 1.44438(39) 1.44256(12) 1.442778(92) 1.44275(37) DJK (kHz) -2.452591(34) -2.40564(76) -2.40137(19) -2.40248(26) -2.40552(79) DK (kHz) 1.104892(68) 1.08351(43) 1.08143(14) 1.08196(18) 1.08408(53) d1 (kHz) 0.011517(42) 0.02084(14) 0.001471(61) 0.02183(16) 0.00144(13) d2 (kHz) 0.022030(71) 0.018261(41) 0.013894(29) 0.018304(40) 0.013904(58) HJ (Hz) 0.000392(52) 0.00064(11) 0.000792(23) [0] 0.000535(95) HJK (Hz) -0.0027287(82) -0.00214(29) -0.002798(28) -0.002991(99) HKJ (Hz) 0.003362(13) 0.00291(35) 0.003679(39) 0.00290(24) HK (Hz) -0.001348(12) -0.00132(15) -0.001601(29) -0.00059(21) h1 (Hz) 0.000019(14) h2 (Hz) -0.000154(53) h3 (Hz) 0.000039(13) Nlines 1454 266 604 211 281 σfit 0.0291 0.0383 0.0355 0.0398 0.0393

Main Isotopologue and 13C and 15N Isotopologues 9 Main Isotopologue and 13C and 15N Isotopologues C4H4N2 [2-13C] [4-13C] [5-13C] [1-15N] A0 (MHz) 6276.82717 (21) 6152.67912 (47) 6256.09754 (20) 6132.81825 (31) 6253.95862 (46) B0 (MHz) 6067.16469 (23) 6067.53971 (44) 5957.21874 (20) 6067.35941 (27) 5954.15093 (51) C0 (MHz) 3084.44822 (34) 3054.25189 (60) 3050.84589 (27) 3049.30527 (19) 3049.53055 (71) Nlines 1454 266 604 211 281 σfit 0.0291 0.0383 0.0355 0.0398 0.0393

Synthesis of Deuterium Enriched Samples 10 Sample of pyrimidine in LiOtBu/tBuOD buffer Heated to 125oC for 58 hours Purified via silica gel column and freeze/pump/thawing

Deuterated Isotopologues 11 Deuterated Isotopologues 7.1 9.3 1.2 1.0 2.9 ? ? 3.1 8.4

Dipole Components Isotopologue mA (D) mB (D) C4H4N2 2.28 [2,4-2H] 1.50 12 Dipole Components A Isotopologue mA (D) mB (D) C4H4N2 2.28 [2,4-2H] 1.50 1.72 [2-13C] [2,5-2H] [4-13C] 0.42 2.24 [4,5-2H] 1.55 1.67 [5-13C] [4,6-2H] [1-15N] 0.44 [2,4,6-2H] 2.13 0.82 [2-2H] [4-2H] 0.74 2.16 [4,5,6-2H] [5-2H] [2,4,5,6-2H] 4 2 B C4H4N2 6 A 4 2 B 5 [4,5-2H] 6

Quartets in the [4,5-2H] Spectrum 13 Quartets in the [4,5-2H] Spectrum b-type 2819,10⇦ 2718,9 b-type 2818,10⇦ 2719,9 a-type 2819,10⇦ 2719,9 a-type 2818,10⇦ 2718,9

Deuterium Substituted Isotopologues Sextic S-reduced Hamiltonian in Representation IIIr 14 [2-2H] [4-2H] [5-2H] [2,4-2H] [4,5-2H] [4,6-2H] [4,5,6-2H] A0 (MHz) 6066.842 (37) 6242.39763 (21) 6066.96119 (42) 5934.853 (11) 5913.94866 (97) 6082.41741 (33) 5680.01271 (38) B0 (MHz) 5871.764 (39) 5694.50606 (18) 5840.14916 (45) 5604.080 (11) 5602.3946 (16) 5457.75984 (35) 5457.63939 (40) C0 (MHz) 2983.30038 (84) 2977.37741 (20) 2975.12047 (30) 2881.89426 (41) 2876.48892 (64) 2876.11603 (14) 2782.89178 (47) DJ (kHz) 1.3454(74) 1.333718(96) 1.33773(17) 1.2065(39) 1.21212(57) 1.20830(16) 1.10018(23) DJK (kHz) -2.2324(84) -2.20856(14) -2.22021(28) -2.0004(47) -2.0063(14) -1.99430(37) -1.81944(60) DK (kHz) 1.0007(16) 0.989004(97) 0.99654(17) 0.89821(89) 0.89882(78) 0.89067(22) 0.81554(38) d1 (kHz) -0.13(10) -0.044650(79) -0.06386(53) -0.001(29) -0.03692(73) -0.04145(11) 0.00369(13) d2 (kHz) -0.24(21) -0.007145(73) 0.008069(18) 0.023(38) -0.01177(23) 0.020398(39) 0.011864(61) HJ (Hz) [0] 0.000577(17) 0.000525(64) HJK (Hz) -0.002253(24) -0.00209(13) HKJ (Hz) 0.002843(37) 0.00263(13) HK (Hz) -0.001163(24) -0.001028(61) h1 (Hz) -0.00041(35) h2 (Hz) -0.000146(63) h3 (Hz) Nlines 108 913 586 202 177 422 195 σfit 0.0425 0.0373 0.0365 0.0390 0.0278 0.0346 0.0299

Deuterium Substituted Isotopologues 15 Deuterium Substituted Isotopologues [2-2H] [4-2H] [5-2H] [2,4-2H] [4,5-2H] [4,6-2H] [4,5,6-2H] A0 (MHz) 6066.842 (37) 6242.39763 (21) 6066.96119 (42) 5934.853 (11) 5913.94866 (97) 6082.41741 (33) 5680.01271 (38) B0 (MHz) 5871.764 (39) 5694.50606 (18) 5840.14916 (45) 5604.080 (11) 5602.3946 (16) 5457.75984 (35) 5457.63939 (40) C0 (MHz) 2983.30038 (84) 2977.37741 (20) 2975.12047 (30) 2881.89426 (41) 2876.48892 (64) 2876.11603 (14) 2782.89178 (47) Nlines 108 913 586 202 177 422 195 σfit 0.0425 0.0373 0.0365 0.0390 0.0278 0.0346 0.0299

Equilibrium Structure Calculation 16 Equilibrium Structure Calculation A0, B0, C0 taken from fits and converted to determinable form A0”, B0”, C0” Vibration-rotation and electron mass corrections added Distance and angle parameters least squares fit Vibration-rotation corrections calculated with an anharmonic frequency VPT2 calculation at the CCSD(T)/ANO1 level. Electronic corrections calculated at the CCSD(T)/ANO1 level

Calculated and Experimental Equilibrium Structures 17 Calculated and Experimental Equilibrium Structures Bond Lengths And Angles Experimental Re (Å) CCSD(T)/ANO1 Re (Å) RC(2)-N(3) 1.3346(9) 1.340 RN(3)-C(4) 1.3366(8) 1.341 RC(4)-C(5) 1.3834(6) 1.392 RC(2)-H 1.0813(9) 1.084 RC(4)-H 1.0830(7) 1.085 RC(5)-H 1.0812(8) 1.081 θC(2)-N(3)-C(4) 115.52(6) 115.386 θN(3)-C(4)-C(5) 122.35(5) 122.456 θC(4)-C(5)-C(6) 116.85(5) 116.609 θN(1)-C(2)-H 116.29(6) 116.146 θC(4)-C(5)-H 121.58(5) 121.696 θC(5)-C(4)-H 121.46(9) 121.171 RC(4)-H RC(2)-N(3) RN(3)-C(4) RC(5)-H RC(4)-C(5) RC(2)-H θC(5)-C(4)-H θC(4)-C(5)-H θN(1)-C(2)-H θC(2)-N(3)-C(4) θN(3)-C(4)-C(5) θC(4)-C(5)-C(6)

Importance of Corrections 18 Importance of Corrections Isotopologue Di (mÅ2) a corrected a and e- corrected C4H4N2 0.0350 -0.0132 -0.000797 [2-13C]-C4H4N2 0.0352 -0.0135 -0.000609 [4-13C]-C4H4N2 0.0355 -0.0137 -0.000944 [5-13C]-C4H4N2 0.0360 -0.0116 0.000481 [1-15N]-C4H4N2 0.0356 -0.0131 -0.000395 [2-2H]-C4H4N2 0.0308 -0.0140 -0.000164 [4-2H]-C4H4N2 0.0318 -0.0136 0.0000361 [5-2H]-C4H4N2 0.0329 -0.0134 -0.000103 [2,4-2H]-C4H4N2 0.0285 0.000719 [4,5-2H]-C4H4N2 0.0299 0.000865 [4,6-2H]-C4H4N2 0.0275 -0.0149 0.000924 [4,5,6-2H]-C4H4N2 0.0269 0.00167 Vibration-rotation corrections calculated with an anharmonic frequency VPT2 calculation at the CCSD(T)/ANO1 level. Electronic corrections calculated at the CCSD(T)/ANO1 level

Comparison to Other Structures 19 Comparison to Other Structures Experimental Computational Parameters Re (Å) CCSD(T)/ANO1 Substitution Rs (Å) Kisiel et al. Piccardo et al. Rese (Å) RC(2)-N(3) 1.3346(9) 1.340 1.338 1.337(2) 1.3334(1) RN(3)-C(4) 1.3366(8) 1.341 1.344 1.332(3) 1.3355(1) RC(4)-C(5) 1.3834(6) 1.392 1.393 1.393(2) 1.3867(3) RC(2)-H 1.0813(9) 1.084 1.087 - [1.0822] RC(4)-H 1.0830(7) 1.085 1.086 [1.0826] RC(5)-H 1.0812(8) 1.081 1.082 [1.0795] θC(2)-N(3)-C(4) 115.52(6) 115.386 115.80 115.8(3) 115.69(1) θN(3)-C(4)-C(5) 122.35(5) 122.456 122.38 122.4(3) 122.27(2) θC(4)-C(5)-C(6) 116.85(5) 116.609 116.42 116.4(2) 116.72(1) θN(1)-C(2)-H 116.29(6) 116.146 116.39 116.31(1) θC(4)-C(5)-H 121.58(5) 121.696 121.79 121.64(1) θC(5)-C(4)-H 121.46(9) 121.171 120.96 [121.36] Z. Kisiel, L. Pszczolkowski, I. R. Medvedev, M. Winnewisser, F. C. De Lucia, E. Herbst, J. Mol. Spectrosc. 233, 231-243 (2005). M. Piccardo, E. Penocchino, C. Puzzarini, M. Biczysko, V. Barone, J. Phys. Chem. 119, 2058-2082 (2015).

Thanks! The McMahon-Woods Research Group 20 Robert J. McMahon R. Claude Woods 8:30 Friday in 217 Noyes Lab (FE01) Brian J. Esselman Brent K. Amberger 8:47 Friday in 217 Noyes Lab (FE02) Ben C. Haenni Stephanie N. Knezz 5:00 Thursday in 217 Noyes Lab (RJ13) Nick A. Walters 10:12 Friday in 217 Noyes Lab (FE06) Vanessa L. Orr Cara E. Schwarz Next! Maria A. Zdanovskaia P. Matisha Kirkconnell