Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,

Slides:



Advertisements
Similar presentations
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Advertisements

B. J. Kim, D. -W. Kim, S. H. Kim, J. H. Cho, H. J. Lee, D. Y. Park, S
X. I. Gu, P. E. Palacio-Mancheno, D. J. Leong, Y. A. Borisov, E
Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model  A. Boudenot, N. Presle, R. Uzbekov, H. Toumi, S.
Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics 
J. A. Waung, S. A. Maynard, S. Gopal, A. Gogakos, J. G. Logan, G. R
Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis  T. Weng, Y. Xie, L. Yi, J. Huang,
M. Siebelt, A. E. van der Windt, H. C. Groen, M. Sandker, J. H
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered joint kinematics hypothesis of osteoarthritis 
Treatment of full thickness focal cartilage lesions with a metallic resurfacing implant in a sheep animal model, 1 year evaluation  N. Martinez-Carranza,
An in vivo cross-linkable hyaluronan gel with inherent anti-inflammatory properties reduces OA cartilage destruction in female mice subjected to cruciate.
S. Ogawa, Y. Awaga, M. Takashima, A. Hama, A. Matsuda, H. Takamatsu 
ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage.
K. Murata, N. Kanemura, T. Kokubun, T. Fujino, Y. Morishita, K
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography  D.D. McErlain, M.Sc., C.T.G. Appleton,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice  S. Hashimoto, M.F. Rai, K.L.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Cartilage damage pattern in relation to subchondral plate thickness in a collagenase- induced model of osteoarthritis  S.M. Botter, M.Sc., G.J.V.M. van.
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse  S.S. Glasson, B.V.Sc., T.J. Blanchet, B.S., E.A.
Parathyroid hormone(1-34) exhibits more comprehensive effects than celecoxib in cartilage metabolism and maintaining subchondral bone micro-architecture.
Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees  G.J. Kazakia, D. Kuo, J. Schooler, S.
Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma  B. Poulet, T.A.T. Westerhof, R.W. Hamilton,
Monoiodoacetic acid induces arthritis and synovitis in rats in a dose- and time- dependent manner: proposed model-specific scoring systems  M. Udo, T.
Destabilization of the medial meniscus leads to subchondral bone defects and site- specific cartilage degeneration in an experimental rat model  H. Iijima,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states  E. Hargrave-Thomas, F.
Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice  A. Cai, E. Hutchison,
Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods  P. Podsiadlo, Ph.D., L.
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
Is cartilage sGAG content related to early changes in cartilage disease? Implications for interpretation of dGEMRIC  J.J. Stubendorff, E. Lammentausta,
B. C. Fleming, H. L. Oksendahl, W. A. Mehan, R. Portnoy, P. D
A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis  A.J. Ramme, M. Lendhey, J.G.
Dietary fatty acids differentially affect the development of injury-induced osteoarthritis with diet-induced obesity in mice  C.-L. Wu, D. Jain, D. Little,
D. Kumar, K.T. Manal, K.S. Rudolph  Osteoarthritis and Cartilage 
Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic.
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis 
Therapeutic effects of an anti-ADAMTS-5 antibody on joint damage and mechanical allodynia in a murine model of osteoarthritis  R.E. Miller, P.B. Tran,
K.H. Collins, R.A. Reimer, R.A. Seerattan, T.R. Leonard, W. Herzog 
Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilisation of the medial meniscus and increased joint laxity  J.P.
Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis  J. Hirvasniemi, J. Thevenot, V. Immonen,
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model  F. Intema, H.A.W.
Changes of human menisci in osteoarthritic knee joints
Integrin α1β1 protects against signs of post-traumatic osteoarthritis in the female murine knee partially via regulation of epidermal growth factor receptor.
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
Joint loading and proximal tibia subchondral trabecular bone microarchitecture differ with walking gait patterns in end-stage knee osteoarthritis  B.C.
Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis  B. Doyran, W. Tong,
R. Takaishi, T. Aoyama, X. Zhang, S. Higuchi, S. Yamada, T. Takakuwa 
Noninvasive dualMRI-based strains vary by depth and region in human osteoarthritic articular cartilage  A.J. Griebel, S.B. Trippel, C.P. Neu  Osteoarthritis.
K. Kuroki, C.R. Cook, J.L. Cook  Osteoarthritis and Cartilage 
Osteoarthritis and Cartilage
Influence of medial meniscectomy on stress distribution of the femoral cartilage in porcine knees: a 3D reconstructed T2 mapping study  T. Shiomi, T.
Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography  N.J. Willett, T. Thote, M. Hart,
Weight-bearing asymmetry and vertical activity differences in a rat model of post- traumatic knee osteoarthritis  C.B. Hamilton, M.A. Pest, V. Pitelka,
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
A. Sophocleous, A.E. Börjesson, D.M. Salter, S.H. Ralston 
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
W.J. Anderst, M.S., C. Les, D.V.M., Ph.D., S. Tashman, Ph.D. 
Presentation transcript:

Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima, T. Aoyama, J. Tajino, A. Ito, M. Nagai, S. Yamaguchi, X. Zhang, W. Kiyan, H. Kuroki  Osteoarthritis and Cartilage  Volume 24, Issue 2, Pages 354-363 (February 2016) DOI: 10.1016/j.joca.2015.09.001 Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Trajectories of knee joint excursions during rat ambulation recorded using a 3-dimensional motion capture apparatus at 4 weeks after surgery. (A) Sham-operated knee. (B) DMM-operated knee. Zero percent step cycle means paw contact, and 100% is the next paw contact of the same limb. Knee flexion angle = 0° means that the trochanter major (hip), knee joint cavity (knee), and lateral malleolus (ankle) are located in alignment. Lines denote the mean ± 95% confidence intervals (n = 4). Vertical line: transition from stance phase to swing phase during ambulation in sham- and DMM-operated knees. Osteoarthritis and Cartilage 2016 24, 354-363DOI: (10.1016/j.joca.2015.09.001) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Representative 3-dimensional micro-computed tomography (μ-CT) images of subchondral bone. (A) Three-dimensional reconstruction of the femoral condyle and tibia, with subchondral bone perforations (red arrow) (a), and with subchondral bone perforations of all samples (n = 8 for each time point) superimposed (red circle) on the same 3-dimensional reconstruction images (b). Asterisk denotes the medial side. (B) Three-dimensional μ-CT images of the sagittal plane with various knee flexion angles at 4 weeks after surgery. Red box presents a magnification of the figure on the below. Red arrow indicates SBCs without trabecular structure, as confirmed by perforations from surface view (as shown [A]). Osteoarthritis and Cartilage 2016 24, 354-363DOI: (10.1016/j.joca.2015.09.001) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Histological analysis of cartilage and subchondral bone. (A) Representative photographs of toluidine blue-stained sections in the medial compartment. Asterisk denotes severe subchondral bone damage, with replacement by fibrous tissue. Magnification: ×100. Scale bars = 200 μm. (B) OARSI score of medial the femur and tibia. Boxplots denote median values and interquartile ranges. Vertical bars denote ranges. Significantly different values (P < 0.05) are displayed in bold (n = 8; Mann–Whitney U test). (C) Calcified cartilage and subchondral bone (SB) damage score of the medial femur and tibia. Boxplots denote median values and interquartile ranges. Vertical bars denote ranges. Significantly different values (P < 0.05) are displayed in bold (n = 8; Mann–Whitney U test). Osteoarthritis and Cartilage 2016 24, 354-363DOI: (10.1016/j.joca.2015.09.001) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Immunohistochemistry findings. (A) Representative photographs of type II collagen and Col2-3/4c. Magnification: ×100. Scale bars = 200 μm. (B) Mean staining intensity of type II collagen (0–255: 0 indicates no staining and 255 indicates maximum staining) in the cartilage. Bars denote the mean ± 95% confidence intervals. Significantly different values (P < 0.05) are displayed in bold (n = 8; paired t-test). Osteoarthritis and Cartilage 2016 24, 354-363DOI: (10.1016/j.joca.2015.09.001) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Ultrastructure of the cartilage surface of the medial tibial plateau using scanning electron microscopy (SEM). (A) Comparison of subchondral bone perforations (red circle) confirmed by 3-dimensional micro-computed tomography (μ-CT) images (a) as shown Fig. 2, and cartilage degeneration observed by SEM (b). Black box delineates the region of interest for SEM observation. Scale bars = 200 μm. (B) Magnification of the SEM image in the medial tibial plateau in sham (a, c) and DMM (b, d) cartilage surfaces. White boxes (a, b) present a magnification of the corresponding figure (c and d, respectively). Scale bars = 100 μm (a, b); 10 μm (c, d). Osteoarthritis and Cartilage 2016 24, 354-363DOI: (10.1016/j.joca.2015.09.001) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Biomechanical properties of the medial femoral posterior condyle and medial tibial plateau. (A) Dynamic stiffness (N/mm) calculated by deformation (mm) until the test load achieved to 0.1 N. Bars show the mean ± 95% confidence intervals (CIs). Significantly different values (P < 0.05) are displayed in bold (n = 8; paired t-test). (B) Creep response (μm), which is the equilibrium deformation between the initially applied test load and after 300 s maintaining a 0.1 N test load. Bars show the mean ± 95% CIs. Significantly different values (P < 0.05) are displayed in bold (n = 8; paired t-test). Osteoarthritis and Cartilage 2016 24, 354-363DOI: (10.1016/j.joca.2015.09.001) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Supplementary Fig. 1 Gait parameters obtained from 3-dimensional motion analysis at 4 weeks after surgery: maximum knee extension angle, flexion angle, and total knee range of motion. (A) Stance phase. (B) Swing phase. Positive value of maximum extension angle indicates that the knee joint is flexed (e.g., maximum extension angle = 60° means that the knee is flexed at a 60° angle). No significant differences between sham- and destabilized medial meniscus-operated knees are seen in the 3 gait parameters. Bars show the mean ± 95% confidence intervals (n = 4; pared t-test). Osteoarthritis and Cartilage 2016 24, 354-363DOI: (10.1016/j.joca.2015.09.001) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions