Angiopoietin-1 promotes endothelial differentiation from embryonic stem cells and induced pluripotent stem cells by Hyung Joon Joo, Honsoul Kim, Sang-Wook.

Slides:



Advertisements
Similar presentations
Volume 24, Issue 9, Pages (September 2016)
Advertisements

by Ayten Kandilci, and Gerard C. Grosveld
An anti-CD20–IL-2 immunocytokine is highly efficacious in a SCID mouse model of established human B lymphoma by Stephen D. Gillies, Yan Lan, Steven Williams,
Monocytes form a vascular barrier and participate in vessel repair after brain injury by John Glod, David Kobiler, Martha Noel, Rajeth Koneru, Shoshana.
Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling.
Identification of key regulatory pathways of myeloid differentiation using an mESC-based karyotypically normal cell model by Dong Li, Hong Yang, Hong Nan,
Protein kinase B (PKB/c-akt) regulates homing of hematopoietic progenitors through modulation of their adhesive and migratory properties by Miranda Buitenhuis,
HOXA9 promotes hematopoietic commitment of human embryonic stem cells
by JoAnn Castelli, Elaine K
Hematopoietic cells regulate the angiogenic switch during tumorigenesis by Rika Okamoto, Masaya Ueno, Yoshihiro Yamada, Naoko Takahashi, Hideto Sano, Toshio.
The κ opioid system regulates endothelial cell differentiation and pathfinding in vascular development by Kohei Yamamizu, Sadayoshi Furuta, Shiori Katayama,
Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production by Yeon-Sook Choi, Hyun-Jung.
Conditional ablation of LYVE-1+ cells unveils defensive roles of lymphatic vessels in intestine and lymph nodes by Jeon Yeob Jang, Young Jun Koh, Seung-Hun.
by Shawn W. Cochrane, Ying Zhao, Robert S. Welner, and Xiao-Hong Sun
Adhesion to E-selectin promotes growth inhibition and apoptosis of human and murine hematopoietic progenitor cells independent of PSGL-1 by Ingrid G. Winkler,
The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages by Barbara Scheuerer, Martin Ernst,
Repression of BMI1 in normal and leukemic human CD34+ cells impairs self-renewal and induces apoptosis by Aleksandra Rizo, Sandra Olthof, Lina Han, Edo.
Megakaryocyte Growth and Development Factor-Induced Proliferation and Differentiation Are Regulated by the Mitogen-Activated Protein Kinase Pathway in.
Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways by Chang Min Yoon, Bok Sil Hong, Hyung Geun Moon,
by Neil P. Rodrigues, Viktor Janzen, Randolf Forkert, David M
Emergence of muscle and neural hematopoiesis in humans
Human NK cell development in NOD/SCID mice receiving grafts of cord blood CD34+ cells by Christian P. Kalberer, Uwe Siegler, and Aleksandra Wodnar-Filipowicz.
Undifferentiated hematopoietic cells are characterized by a genome-wide undermethylation dip around the transcription start site and a hierarchical epigenetic.
Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E)‏ by Grzegorz Terszowski, Claudia Waskow, Peter.
Gene-trap expression screening to identify endothelial-specific genes
Bone marrow is a reservoir for proangiogenic myelomonocytic cells but not endothelial cells in spontaneous tumors by Andrew C. Dudley, Taturo Udagawa,
Hyaluronate-Enhanced Hematopoiesis: Two Different Receptors Trigger the Release of Interleukin-1β and Interleukin-6 From Bone Marrow Macrophages by Sophia.
Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients by Devi.
Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy by Fumihiko Tsushima, Sheng Yao, Tahiro Shin, Andrew Flies, Sarah.
by Sheng F. Cai, Xuefang Cao, Anjum Hassan, Todd A
by Jun Yuan, David B. Lovejoy, and Des R. Richardson
Bifurcated Dendritic Cell Differentiation In Vitro From Murine Lineage Phenotype-Negative c-kit + Bone Marrow Hematopoietic Progenitor Cells by Yi Zhang,
Ligation of CD31 (PECAM-1) on Endothelial Cells Increases Adhesive Function of vβ3 Integrin and Enhances β1 Integrin-Mediated Adhesion of Eosinophils.
An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis by Roland E. Kälin, Nadja.
by Jonathan Hoggatt, Pratibha Singh, Janardhan Sampath, and Louis M
TLR5 signaling in murine bone marrow induces hematopoietic progenitor cell proliferation and aids survival from radiation by Benyue Zhang, Damilola Oyewole-Said,
Regulatory T cells differentially modulate the maturation and apoptosis of human CD8+ T-cell subsets by Maria Nikolova, Jean-Daniel Lelievre, Matthieu.
Pak2 regulates myeloid-derived suppressor cell development in mice
Volume 8, Issue 6, Pages (June 2017)
by Suzanne M. Vercauteren, and Heather J. Sutherland
Volume 7, Issue 4, Pages (October 2016)
Volume 3, Issue 5, Pages (November 2014)
Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease by Stéphane M. Camus, Blandine Gausserès, Philippe.
Molecular Therapy - Methods & Clinical Development
by Hairui Su, Chiao-Wang Sun, Szu-Mam Liu, Xin He, Hao Hu, Kevin M
Cytotoxic CD8+ T Cells Stimulate Hematopoietic Progenitors by Promoting Cytokine Release from Bone Marrow Mesenchymal Stromal Cells  Christian M. Schürch,
Qiuping He, Suwei Gao, Junhua Lv, Wei Li, Feng Liu 
Volume 24, Issue 9, Pages (September 2016)
Volume 5, Issue 1, Pages (July 2015)
Volume 12, Issue 4, Pages (April 2013)
Volume 24, Issue 9, Pages (September 2016)
by Kalpana Parvathaneni, and David W. Scott
Volume 8, Issue 2, Pages (February 2011)
Volume 8, Issue 4, Pages (April 2017)
Volume 16, Issue 5, Pages (May 2002)
Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis by Tomohiro Umezu, Satoshi Imanishi, Kenko.
Ravindra Majeti, Christopher Y. Park, Irving L. Weissman 
Application of small molecule CHIR99021 leads to the loss of hemangioblast progenitor and increased hematopoiesis of human pluripotent stem cells  Yekaterina.
Volume 10, Issue 4, Pages (April 2018)
Twist1 regulates embryonic hematopoietic differentiation through binding to Myb and Gata2 promoter regions by Kasem Kulkeaw, Tomoko Inoue, Tadafumi Iino,
Kiran Batta, Magdalena Florkowska, Valerie Kouskoff, Georges Lacaud 
Serial vaccination with 32Dp210-derived whole cell vaccines in non-tumor-bearing mice stimulates robust antileukemic cytolytic activity. Serial vaccination.
Hematopoietic potential of HEP from patient-specific iPSC may be reduced. Hematopoietic potential of HEP from patient-specific iPSC may be reduced. (A)
CD41+ population is reduced in response to RapGEF2 deletion.
IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells by Ana Camelo, Guglielmo Rosignoli, Yoichiro.
Volume 11, Issue 5, Pages (November 1999)
Volume 5, Issue 3, Pages (September 2009)
Volume 10, Issue 11, Pages (March 2015)
Granulocyte colony-stimulating factor mobilizes dormant hematopoietic stem cells without proliferation in mice by Jeffrey M. Bernitz, Michael G. Daniel,
Rapamycin inhibits IL-4—induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo by Holger Hackstein, Timucin Taner,
Presentation transcript:

Angiopoietin-1 promotes endothelial differentiation from embryonic stem cells and induced pluripotent stem cells by Hyung Joon Joo, Honsoul Kim, Sang-Wook Park, Hyun-Jai Cho, Hyo-Soo Kim, Do-Sun Lim, Hyung-Min Chung, Injune Kim, Yong-Mahn Han, and Gou Young Koh Blood Volume 118(8):2094-2104 August 25, 2011 ©2011 by American Society of Hematology

Ang1 promotes EC differentiation via Tie2 signaling. Ang1 promotes EC differentiation via Tie2 signaling. Flk-1+ MPCs were purified on E4.5 and cultured on OP9 cells. Control buffer (Control), Ang1 (200 ng/mL), sTie2-Fc (sT2, 25μg/mL), RGD peptide (GRGDSP, 25μg/mL), and control peptide (GRADSP, 25μg/mL) were administered alone or together on days 0 and 2, and analyses were performed on day 3. (A) Treatment scheme of Ang1 or inhibitor. (B) Comparison of cell number of each EC colony on day 3 (n = 4). *P < .05 compared with control. (C) Images showing CD144+ EC colonies on day 3. Nuclei were stained with Hoechst. Scale bar represents 200 μm. (D) Dose dependency of Ang1 on the percentage of CD31+/CD144+ ECs from purified Flk-1+ cells on day 3 (n = 3). *P < .05 compared with control. (E,G) Representative FACS analyses of the population of CD31+/CD144+ ECs. Numbers indicate the percentage of CD31+/CD144+ ECs. (F,H) Comparison percentages of CD31+/CD144+ ECs (n = 4). *P < .05 compared with control, GRGDSP, or GRADSP; #P < .01 compared with Ang1. Hyung Joon Joo et al. Blood 2011;118:2094-2104 ©2011 by American Society of Hematology

Ang1 promotes the EC population but reduces the HSC and VSMC populations during Flk-1+ MPC differentiation. Ang1 promotes the EC population but reduces the HSC and VSMC populations during Flk-1+ MPC differentiation. Flk-1+ MPCs were purified on E4.5 and cultured on OP9 cells. Control or Ang1 was administered on days 0, 2, and 4, and analyses were performed on days 1.5, 3, and 6. (A,C,E) Representative FACS analyses of the populations of CD31+/CD144+ ECs, CD45+ HSCs, and α-SMA+ VSMCs. Numbers indicate percentages of ECs, HSCs and VSMCs. (B,D,F) Comparison of percentages of CD31+/CD144+ ECs, CD45+ HSCs, and α-SMA+ VSMCs over time (n = 5). *P < .01 compared with control. Hyung Joon Joo et al. Blood 2011;118:2094-2104 ©2011 by American Society of Hematology

Ang1 increases EC proliferation but suppresses EC apoptosis during Flk-1+ MPC differentiation. Ang1 increases EC proliferation but suppresses EC apoptosis during Flk-1+ MPC differentiation. Control or Ang1 was administered into Flk-1+ MPCs on days 0, 2, and 4 during OP9 coculture. (A) Images showing PHH3+ cells in CD144+ EC colonies on days 1.5, 2, 2.5, 3, and 3.5. Nuclei were stained with Hoechst. Scale bar represents 100 μm. (B) Comparison of number of PHH3+ ECs over time (n = 5). *P < .05 compared with control. (C) Representative FACS analyses of the populations of annexin+ apoptotic Flk-1+ cells and Flk-1− cells on day 3. Numbers indicate percentages of each population. (D) Comparison of percentage of annexin+ apoptotic Flk-1+ cells and Flk-1− cells on day 3 (n = 3). *P < .05 compared with control. Hyung Joon Joo et al. Blood 2011;118:2094-2104 ©2011 by American Society of Hematology

Ang1 drives CD41+ cells to ECs rather than HSCs Ang1 drives CD41+ cells to ECs rather than HSCs. Expression pattern and differentiation potential of CD41+ cells derived from Flk-1+ MPCs were characterized. Ang1 drives CD41+ cells to ECs rather than HSCs. Expression pattern and differentiation potential of CD41+ cells derived from Flk-1+ MPCs were characterized. (A) Representative FACS analyses showing surface expression patterns of CD144, CD31, Tie2, Sca-1, and c-Kit, each compared with CD41 on Flk-1+ MPC–derived cells on day 1.5. (B) Images showing CD144+/CD41+ cells in endothelial colonies on day 1.5. Nuclei were stained with Hoechst. Scale bar represents 20 μm. (C) Experimental scheme for the differentiation potential of CD41+ cells. Sorted CD41+ cells on day 1.5 were replated on the freshly prepared OP9 cells, treated with Control, Ang1, sT2, or Ang1 + sT2 on days 1.5, and 3.5, and analyses were performed on day 6. (D,F) Representative FACS analyses of the populations of CD31+/CD144+ ECs and CD45+ HSCs from the sorted CD41+ cells. Numbers indicate percentages of each population. (E,G) Comparison of percentages of CD31+/CD144+ ECs and CD45+ HSCs from the sorted CD41+ cells (n = 3). *P < .05 compared with control; #P < .05 compared with Ang1. Hyung Joon Joo et al. Blood 2011;118:2094-2104 ©2011 by American Society of Hematology

Ang1 increases EC differentiation from mouse iPSCs and human ESCs Ang1 increases EC differentiation from mouse iPSCs and human ESCs. (A-C) iPSC-derived Flk-1+ MPCs were purified on E4.5 and cultured on OP9 cells with control buffer (Control) or Ang1. Ang1 increases EC differentiation from mouse iPSCs and human ESCs. (A-C) iPSC-derived Flk-1+ MPCs were purified on E4.5 and cultured on OP9 cells with control buffer (Control) or Ang1. Analyses were performed on day 3. (A) Images showing CD144+ EC colonies. Nuclei were stained with Hoechst. Scale bar represents 200 μm. (B) Representative FACS analyses of the population of CD31+/CD144+ ECs. Numbers indicate percentages of ECs from Flk-1+ MPCs during differentiation. (C) Comparison percentages of CD31+/CD144+ ECs from purified Flk-1+ MPCs (n = 3). *P < .05 compared with control. (D-E) hESC-derived CD34+ cells were purified and cultured with Control or Ang1 and analyses were performed 9 days later. (D) Images showing CD144+ EC colonies. Nuclei were stained with Hoechst. Scale bars represent 200 μm. (E) Representative FACS analyses of the population of CD31+/CD105+ ECs. Numbers indicate percentages of ECs from CD34+ cells during differentiation. (F) Comparison percentages of CD31+/CD105+ ECs from purified CD34+ cells (n = 3). *P < .05 compared with control. Hyung Joon Joo et al. Blood 2011;118:2094-2104 ©2011 by American Society of Hematology

Ang1-induced CD31+/CD144+ ECs have a neovasculogenic potential in vitro and in vivo. Ang1-induced CD31+/CD144+ ECs have a neovasculogenic potential in vitro and in vivo. Purified Flk-1+ MPCs differentiated from mouse ESCs were cultured for 3 days on OP9 cells. Ang1 was administered on days 0 and 2. CD31+/CD144+ cells were sorted by FACS on day 3 and used as Ang1-EC-ESCs for further experiments. (A) Phase contrast images showing Ang1-EC-ESCs. Scale bar represents 100 μm. (B) Immunostaining images showing Ang1-EC-ESCs. Nuclei were stained with Hoechst. Scale bar represents 100 μm. (C) Images showing network formations of Ang1-EC-ESCs and HUVECs. Ang1-EC-ESCs and HUVECs were plated on Matrigel-covered plates and incubated in EGM-2. The tube structures were observed after 24 hours. Scale bar represents 200 μm. (D-E) Ang1-mESC-ECs were injected subcutaneously into the dorsal skin of cyclosporine A–treated CD31-deficient mice in Matrigel. The implanted Matrigel was harvested 14 days after injection of FITC-lectin 20 minutes before the mice were killed; The presence of CD31+ vessel-like structures containing FITC-lectin can be identified in regions 1 and 2, indicating that effective perfusion had taken place in the implanted Ang1-EC-ESCs. The bottom 2 panels are the magnified views of indicated regions. Scale bars represent 50 μm. Hyung Joon Joo et al. Blood 2011;118:2094-2104 ©2011 by American Society of Hematology

Schematic diagram of the effect of Ang1 on endothelial and hematopoietic differentiation. Schematic diagram of the effect of Ang1 on endothelial and hematopoietic differentiation. CD41+ cells derived from Flk-1+ MPCs differentiate further into either the endothelial or the hematopoietic lineage. Ang1 potentiates EC differentiation via Ang1/Tie2 signaling, and its mechanisms are: (1) modulating CD41+ cells to differentiate into the endothelial lineage rather than the hematopoietic lineage, and (2) promoting EC proliferation and survival during differentiation. Hyung Joon Joo et al. Blood 2011;118:2094-2104 ©2011 by American Society of Hematology