Signals.

Slides:



Advertisements
Similar presentations
Recitation 8: 10/28/02 Outline Processes Signals –Racing Hazard –Reaping Children Annie Luo Office Hours: Thursday 6:00.
Advertisements

Week Fourteen Agenda Announcements Final Exam True/False -100 questions (1 point per question) Multiple Choice - 40 questions (2 points per question)
2.3 InterProcess Communication (IPC) Part A. IPC methods 1. Signals 2. Mutex (MUTual EXclusion) 3. Semaphores 4. Shared memory 5. Memory mapped files.
1 Select and poll and Signals CS 241 April 6, 2012 University of Illinois.
15-213, Fall 06 Outline Shell Lab Processes Signals.
1 Signals. 2 Communicating with the OS System call (last lecture)  Request to the operating system to perform a task  … that the process does not have.
CS Lecture 17 Outline Named pipes Signals Lecture 17
Signals Hua LiSystems ProgrammingCS2690Signals. Topics: Sending Signals -- kill(), raise() Signal Handling -- signal() sig_talk.c -- complete example.
Operating Systems Course Hebrew University Spring 2007 Signals & User Thread.
Slide 6-1 Copyright © 2004 Pearson Education, Inc. Operating Systems: A Modern Perspective, Chapter 6 Threads and Scheduling 6.
1 Signals COS Goals of Today’s Lecture Overview of signals  Notifications sent to a process  UNIX signal names and numbers  Ways to generate.
1 Signals. 2 Context of Remaining Lectures Second half of COS 217 takes 2 tours: 1.“Language levels” tour C → assembly language → machine language Illustrated.
CS Lecture 16 Outline Inter-process Communication (IPC) – Pipes – Signals Lecture 161CS Operating Systems 1.
Signal Signal : - is a notification sent to a process to notify it of some event - interrupts whatever the process is doing and force it to handle a signal.
Section A (March 14) Outline Exceptions Process Signals Non-local jumps Reminders Lab4: Due Next Thursday TA: Kun Gao Shamelessly Modified from Minglong.
Signals, Synchronization CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han.
CSc 352 Signal Handling in Unix Saumya Debray Dept. of Computer Science The University of Arizona, Tucson
Process states inWindows 2000 and Linux Module 2.1.
UNIX Signals Bach 7.2 Operating Systems Course The Hebrew University Spring 2010.
Signals & Timers CS241 Discussion Section Spring 2009 Week 6.
1Reference “Introduction To Unix Signals Programming” in the reference material section Man page – sigprocmask, alarm “Understanding the Linux Kernel”
The kernel considers each program running on your system to be a process A process lives as it executes, with a lifetime that may be short or long A process.
* POSIX-Defined Signals * Signaling Processes * Signal Mask * sigaction * kill and sigaction * alarm Topics.
Week Fourteen Agenda Announcements Final Exam True/False -100 questions (1 point per question) Multiple Choice - 40 questions (2 points per question)
Agenda  Working with Processes: Purpose Running Programs within same process (execl, execlp, execle, execv, execvp, execve) “Spawning” other process (fork,
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. C H A P T E R S I X Exception Handling.
Scis.regis.edu ● CS 468: Advanced UNIX Class 5 Dr. Jesús Borrego Regis University 1.
Week Fourteen Agenda Announcements Final Exam True/False -100 questions (1 point per question) Multiple Choice - 40 questions (2 points per question)
Signals and Signal Processing CIS 370 Lab 7 Umass Dartmouth.
Signals and Signal Handling. Signals A predefined message sent between two processes or from the kernel to a process, or by a user to a process A software.
Signals (Chap 10 in the book “Advanced Programming in the UNIX Environment”) Acknowledgement : Prof. Y. Moon at Kangwon Nat’l Univ.
NCHU System & Network Lab Lab #8 Signals Operating System Lab.
1 Signals (continued) CS 241 April 9, 2012 University of Illinois.
UNIX Signals * POSIX-Defined Signals * Signaling Processes * Signal Mask * sigaction * kill and sigaction * alarm * Interval Timers * POSIX.1b Timers *
Interprocess Communication Mechanisms. IPC Signals Pipes System V IPC.
Operating Systems Recitation 4, April th, 2002 Signals.
CSC Advanced Unix Programming, Fall, 2008 Welcome back to UNIX System Programming! Monday, September 22, class 5.
1 UNIX System Programming Signals. 2 Overview 1. Definition 2. Signal Types 3. Generating a Signal 4. Responding to a Signal 5. Common Uses of Signals.
KUKUM Real Time System Module #3 POSIX programming Lecture 2.
© 숙대 창병모 1 제 10 장 신호 (Signal). © 숙대 창병모 2 Contents 1. Signal Concepts 2. signal() 3. Interrupted System Calls 4. kill() /raise() 5. alarm() pause() 6.
Today’s topic Environment variables Signal. The list of environment variables –try ‘env’ –Environment variables can be defined in shell setenv DISPLAY.
Today’s topics Signals and how to control the program behavior in handling signals. Terminal I/O.
Signals & Message queue Inter process mechanism in Linux system 3/24/
ACCESS CONTROL. Components of a Process  Address space  Set of data structures within the kernel - process’s address space map - current status - execution.
S -1 Processes. S -2 wait and waitpid (11.2) Recall from a previous slide: pid_t wait( int *status ) wait() can: (a) block; (b) return with status; (c)
1 Lecture 19: Unix signals and Terminal management n what is a signal n signal handling u kernel u user n signal generation n signal example usage n terminal.
Copyright ©: Nahrstedt, Angrave, Abdelzaher1 Signals.
Copyright ©: Nahrstedt, Angrave, Abdelzaher, Caccamo1 Signals.
Operating Systems Practical Session 3, Signals 1.
Operating Systems Summer Semester 2011 Practical Session 2, Signals 1.
Operating Systems Inter-Process Communication Signals Moti Geva
UNIX signals.
Recitation 7 – 3/18/02 Outline fork and scheduling Signals
G.Jyostna.
Recitation 7 (Oct. 25) Outline Minglong Shao Office hours: Reminders
Signals What is a Signal?
Precept 14 : Ish dup() & Signal Handling
Task Control: Signals and Alarms Chapter 7 and 8
Linux/UNIX Programming
Practical Session 3, Signals
Exceptional Control Flow Part II
UNIT-IV Process and Signals
Exceptional Control Flow
CSC Advanced Unix Programming, Fall 2015
Operating Systems Lecture 12.
Signals Tanzir Ahmed CSCE 313 Fall 2018.
Exceptional Control Flow
Inter-Process Communication ENCE 360
Signals Jennifer Rexford.
Signals.
Presentation transcript:

Signals

UNIX Process Control Non-Existing Process ↓ command ↑ Ctrl-c ↑ kill –2 pid Running Foreground Process Running Background Process ← fg ↑ kill –2 pid ↓ Ctrl-z ↑ fg ↓ kill -20 pid ↑ bg Stopped Background Process

Process Control Implementation Exactly what happens when you: Type Ctrl-c? Keyboard sends hardware interrupt Hardware interrupt is handled by OS OS sends a 2/SIGINT signal Type Ctrl-z? OS sends a 20/SIGTSTP signal Issue a “kill –sig pid” command? OS sends a sig signal to the process whose id is pid Issue a “fg” or “bg” command? OS sends a 18/SIGCONT signal (and does some other things too!)

Signals Q1: How does the OS communicate to an application process? A1: Signals

Definition of Signal Signal: A notification of an event Event gains attention of the OS OS stops the application process immediately, sending it a signal Signal handler executes to completion Application process resumes where it left off Process movl pushl call f addl . void handler(int iSig) { … } signal

Examples of Signals User types Ctrl-c Event gains attention of OS OS stops the application process immediately, sending it a 2/SIGINT signal Signal handler for 2/SIGINT signal executes to completion Default signal handler for 2/SIGINT signal exits process Process makes illegal memory reference OS stops application process immediately, sending it a 11/SIGSEGV signal Signal handler for 11/SIGSEGV signal executes to completion Default signal handler for 11/SIGSEGV signal prints “segmentation fault” and exits process

Sending Signals via Keystrokes Three signals can be sent from keyboard: Ctrl-c  2/SIGINT signal Default handler exits process Ctrl-z  20/SIGTSTP signal Default handler suspends process Ctrl-\  3/SIGQUIT signal

Sending Signals via Commands kill Command kill -signal pid Send a signal of type signal to the process with id pid Can specify either signal type name (-SIGINT) or number (-2) No signal type name or number specified => sends 15/SIGTERM signal Default 15/SIGTERM handler exits process Editorial comment: Better command name would be sendsig Examples kill –2 1234 kill -SIGINT 1234 Same as pressing Ctrl-c if process 1234 is running in foreground

Sending Signals via Function Call raise() int raise(int iSig); Commands OS to send a signal of type iSig to current process Returns 0 to indicate success, non-0 to indicate failure Example int ret = raise(SIGINT); /* Process commits suicide. */ assert(ret != 0); /* Shouldn't get here. */ Note: C90 function

Sending Signals via Function Call kill() int kill(pid_t iPid, int iSig); Sends a iSig signal to the process whose id is iPid Equivalent to raise(iSig) when iPid is the id of current process Editorial comment: Better function name would be sendsig() Example pid_t iPid = getpid(); /* Process gets its id.*/ kill(iPid, SIGINT); /* Process sends itself a SIGINT signal (commits suicide?) */ Note: POSIX (not C90) function

Signal Handling Each signal type has a default handler Most default handlers exit the process A program can install its own handler for signals of any type Exceptions: A program cannot install its own handler for signals of type: 9/SIGKILL Default handler exits the process Catchable termination signal is 15/SIGTERM 19/SIGSTOP Default handler suspends the process Can resume the process with signal 18/SIGCONT Catchable suspension signal is 20/SIGTSTP

Outline UNIX Process Control Signals C90 Signal Handling C90 Signal Blocking POSIX Signal Handling/Blocking Conclusion (optional) Alarms and Interval Timers

Installing a Signal Handler sighandler_t signal(int iSig, sighandler_t pfHandler); Installs function pfHandler as the handler for signals of type iSig pfHandler is a function pointer: typedef void (*sighandler_t)(int); Returns the old handler on success, SIG_ERR on error After call, pfHandler is invoked whenever process receives a signal of type iSig

Installing a Handler Example 1 Program testsignal.c: #define _GNU_SOURCE /* Use modern handling style */ #include <stdio.h> #include <assert.h> #include <signal.h> static void myHandler(int iSig) { printf("In myHandler with argument %d\n", iSig); } …

Installing a Handler Example 1 (cont.) Program testsignal.c (cont.): … int main(void) { void (*pfRet)(int); pfRet = signal(SIGINT, myHandler); assert(pfRet != SIG_ERR); printf("Entering an infinite loop\n"); for (;;) ; return 0; }

Installing a Handler Example 2 Program testsignalall.c: #define _GNU_SOURCE #include <stdio.h> #include <assert.h> #include <signal.h> static void myHandler(int iSig) { printf("In myHandler with argument %d\n", iSig); } …

Installing a Handler Example 2 (cont.) Program testsignalall.c (cont.): … int main(void) { void (*pfRet)(int); pfRet = signal(SIGHUP, myHandler); /* 1 */ pfRet = signal(SIGINT, myHandler); /* 2 */ pfRet = signal(SIGQUIT, myHandler); /* 3 */ pfRet = signal(SIGILL, myHandler); /* 4 */ pfRet = signal(SIGTRAP, myHandler); /* 5 */ pfRet = signal(SIGABRT, myHandler); /* 6 */ pfRet = signal(SIGBUS, myHandler); /* 7 */ pfRet = signal(SIGFPE, myHandler); /* 8 */ pfRet = signal(SIGKILL, myHandler); /* 9 */

Installing a Handler Example 2 (cont.) Program testsignalall.c (cont.): … /* Etc., for every signal. */ printf("Entering an infinite loop\n"); for (;;) ; return 0; }

Installing a Handler Example 3 Program generates lots of temporary data Stores the data in a temporary file Must delete the file before exiting … int main(void) { FILE *psFile; psFile = fopen("temp.txt", "w"); fclose(psFile); remove("temp.txt"); return 0; }

Example 3 Problem What if user types Ctrl-c? OS sends a 2/SIGINT signal to the process Default handler of 2/SIGINT exits the process Problem: The temporary file is not deleted Process dies before remove("tmp.txt") is executed Challenge: Ctrl-c could happen at any time Which line of code will be interrupted??? Solution: Install a signal handler Define a “clean up” function to delete the file Install the function as a signal handler for 2/SIGINT

Example 3 Solution … static FILE *psFile; /* Must be global. */ static void cleanup(int iSig) { fclose(psFile); remove("tmp.txt"); exit(EXIT_FAILURE); } int main(void) { void (*pfRet)(int); psFile = fopen("temp.txt", "w"); pfRet = signal(SIGINT, cleanup); raise(SIGINT); return 0; /* Never get here. */

Predefined Signal Handler: SIG_IGN Can install to ignore signals Subsequently, process will ignore 2/SIGINT signals int main(void) { void (*pfRet)(int); pfRet = signal(SIGINT, SIG_IGN); … }

Predefined Signal Handler: SIG_DFL Can install to restore default signal handler Subsequently, process will handle 2/SIGINT signals using the default handler for 2/SIGINT signals int main(void) { void (*pfRet)(int); pfRet = signal(SIGINT, somehandler); … pfRet = signal(SIGINT, SIG_DFL); }

Outline UNIX Process Control Signals C90 Signal Handling C90 Signal Blocking POSIX Signal Handling/Blocking Conclusion (optional) Alarms and Interval Timers

Race Conditions in Signal Handlers A race condition is a flaw in a program whereby the correctness of the program is critically dependent on the sequence or timing of other events. Race conditions can occur in signal handlers…

Race Condition Example void addSalaryToSavings(int iSig) { int iTemp; iTemp = iSavingsBalance; iTemp += iMonthlySalary; iSavingsBalance = iTemp; } Handler for hypothetical “update monthly salary” signal

Race Condition Example (cont.) (1) Signal arrives; handler begins executing void addSalaryToSavings(int iSig) { int iTemp; iTemp = iSavingsBalance; iTemp += iMonthlySalary; iSavingsBalance = iTemp; } 2000

Race Condition Example (cont.) (2) Another signal arrives; first instance of handler is interrupted; second instance of handler begins executing void addSalaryToSavings(int iSig) { int iTemp; iTemp = iSavingsBalance; iTemp += iMonthlySalary; iSavingsBalance = iTemp; } 2000 void addSalaryToSavings(int iSig) { int iTemp; iTemp = iSavingsBalance; iTemp += iMonthlySalary; iSavingsBalance = iTemp; } 2000

Race Condition Example (cont.) (3) Second instance executes to completion void addSalaryToSavings(int iSig) { int iTemp; iTemp = iSavingsBalance; iTemp += iMonthlySalary; iSavingsBalance = iTemp; } 2000 void addSalaryToSavings(int iSig) { int iTemp; iTemp = iSavingsBalance; iTemp += iMonthlySalary; iSavingsBalance = iTemp; } 2000 2050 2050

Race Condition Example (cont.) (4) Control returns to first instance, which executes to completion void addSalaryToSavings(int iSig) { int iTemp; iTemp = iSavingsBalance; iTemp += iMonthlySalary; iSavingsBalance = iTemp; } 2000 2050 2050 Lost 50 !!!

Blocking Signals in Handlers To block a signal is to queue it for delivery at a later time Why block signals when handler is executing? Avoid race conditions when another signal of type x occurs while the handler for type x is executing How to block signals when handler is executing? Automatic during execution of signal handler!!! Previous sequence cannot happen!!! While executing a handler for a signal of type x, all signals of type x are blocked When/if signal handler returns, block is removed

Race Conditions in General Race conditions can occur elsewhere too int iFlag = 0; void myHandler(int iSig) { iFlag = 1; } int main(void) { if (iFlag == 0) { /* Do something */ Problem: myflag might become 1 just after the comparison! Must make sure that critical sections of code are not interrupted

Blocking Signals in General How to block signals in general? Not possible in C90 Possible using POSIX functions…

Outline UNIX Process Control Signals C90 Signal Handling C90 Signal Blocking POSIX Signal Handling/Blocking Conclusion (optional) Alarms and Interval Timers

POSIX Signal Handling C90 standard Defines signal() and raise() functions Work across all systems (UNIX, LINUX, Windows), but… Work differently across some systems!!! On some systems, signals are blocked during execution of handler for that type of signal -- but not so on other (older) systems On some (older) systems, handler installation for signals of type x is cancelled after first signal of type x is received; must reinstall the handler -- but not so on other systems Does not provide mechanism to block signals in general

POSIX Signal Handling POSIX standard Defines kill(), sigprocmask(), and sigaction() functions Work the same across all POSIX-compliant UNIX systems (Linux, Solaris, etc.), but… Do not work on non-UNIX systems (e.g. Windows) Provides mechanism to block signals in general

Blocking Signals in General Each process has a signal mask in the kernel OS uses the mask to decide which signals to deliver User program can modify mask with sigprocmask() sigprocmask() int sigprocmask(int iHow, const sigset_t *psSet, sigset_t *psOldSet); psSet: Pointer to a signal set psOldSet: (Irrelevant for our purposes) iHow: How to modify the signal mask SIG_BLOCK: Add psSet to the current mask SIG_UNBLOCK: Remove psSet from the current mask SIG_SETMASK: Install psSet as the signal mask Returns 0 iff successful Functions for constructing signal sets sigemptyset(), sigaddset(), … Note: No parallel function in C90

Blocking Signals Example sigset_t sSet; int main(void) { int iRet; sigemptyset(&sSet); sigaddset(&sSet, SIGINT); iRet = sigprocmask(SIG_BLOCK, &sSet, NULL); assert(iRet == 0); if (iFlag == 0) { /* Do something */ } iRet = sigprocmask(SIG_UNBLOCK, &sSet, NULL); …

Blocking Signals in Handlers Signals of type x automatically are blocked when executing handler for signals of type x Additional signal types to be blocked can be defined at time of handler installation…

Installing a Signal Handler sigaction() int sigaction(int iSig, const struct sigaction *psAction, struct sigaction *psOldAction); iSig: The type of signal to be affected psAction: Pointer to a structure containing instructions on how to handle signals of type iSig, including signal handler name and which signal types should be blocked psOldAction: (Irrelevant for our purposes) Installs an appropriate handler Automatically blocks signals of type iSig Returns 0 iff successful Note: More powerful than C90 signal()

Installing a Handler Example Program testsigaction.c: #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <signal.h> static void myHandler(int iSig) { printf("In myHandler with argument %d\n", iSig); } …

Installing a Handler Example (cont.) Program testsigaction.c (cont.): … int main(void) { int iRet; struct sigaction sAction; sAction.sa_flags = 0; sAction.sa_handler = myHandler; sigemptyset(&sAction.sa_mask); iRet = sigaction(SIGINT, &sAction, NULL); assert(iRet == 0); printf("Entering an infinite loop\n"); for (;;) ; return 0; }

Outline UNIX Process Control Signals C90 Signal Handling C90 Signal Blocking POSIX Signal Handling/Blocking Conclusion (optional) Alarms and Interval Timers

Predefined Signals List of the predefined signals: $ kill -l 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8 43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1 64) SIGRTMAX Applications can define their own signals An application can define signals with unused values

Summary Signals A signal is an asynchronous event mechanism C90 raise() or POSIX kill() sends a signal C90 signal() or POSIX sigaction() installs a signal handler Most predefined signals are “catchable” Beware of race conditions Signals of type x automatically are blocked while handler for type x signals is running POSIX sigprocmask() blocks signals in any critical section of code

Summary Q: How does the OS communicate to application programs? A: Signals For more information: Bryant & O’Hallaron, Computer Systems: A Programmer’s Perspective, Chapter 8

Outline UNIX Process Control Signals C90 Signal Handling C90 Signal Blocking POSIX Signal Handling/Blocking Conclusion Alarms and Interval Timers

Alarms alarm() Used to implement time-outs unsigned int alarm(unsigned int uiSec); Sends 14/SIGALRM signal after uiSec seconds Cancels pending alarm if uiSec is 0 Uses real time, alias wall-clock time Time spent executing other processes counts Time spent waiting for user input counts Return value is meaningless Used to implement time-outs

Alarm Example 1 Program testalarm.c: #define _GNU_SOURCE #include <stdio.h> #include <assert.h> #include <signal.h> #include <unistd.h> static void myHandler(int iSig) { printf("In myHandler with argument %d\n", iSig); /* Set another alarm. */ alarm(2); } …

Alarm Example 1 (cont.) Program testalarm.c (cont.): … int main(void) { void (*pfRet)(int); sigset_t sSet; int iRet; /* Make sure that SIGALRM is not blocked. */ sigemptyset(&sSet); sigaddset(&sSet, SIGALRM); iRet = sigprocmask(SIG_UNBLOCK, &sSet, NULL); assert(iRet == 0); pfRet = signal(SIGALRM, myHandler); assert(pfRet != SIG_ERR);

Alarm Example 1 (cont.) Program testalarm.c (cont.): … /* Set an alarm. */ alarm(2); printf("Entering an infinite loop\n"); for (;;) ; return 0; }

Alarm Example 2 Program testalarmtimeout.c: #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <assert.h> #include <signal.h> #include <unistd.h> static void myHandler(int iSig) { printf("\nSorry. You took too long.\n"); exit(EXIT_FAILURE); }

Alarm Example 2 (cont.) Program testalarmtimeout.c (cont.): int main(void) { int i; void (*pfRet)(int); sigset_t sSet; int iRet; /* Make sure that SIGALRM is not blocked. */ sigemptyset(&sSet); sigaddset(&sSet, SIGALRM); iRet = sigprocmask(SIG_UNBLOCK, &sSet, NULL); assert(iRet == 0); …

Alarm Example 2 (cont.) Program testalarmtimeout.c (cont.): … pfRet = signal(SIGALRM, myHandler); assert(pfRet != SIG_ERR); printf("Enter a number: "); alarm(5); scanf("%d", &i); alarm(0); printf("You entered the number %d.\n", i); return 0; }

Interval Timers setitimer() Used by execution profilers int setitimer(int iWhich, const struct itimerval *psValue, struct itimerval *psOldValue); Sends 27/SIGPROF signal continually Timing is specified by psValue psOldValue is irrelevant for our purposes Uses virtual time, alias CPU time Time spent executing other processes does not count Time spent waiting for user input does not count Returns 0 iff successful Used by execution profilers

Interval Timer Example Program testitimer.c: #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <assert.h> #include <signal.h> #include <sys/time.h> static void myHandler(int iSig) { printf("In myHandler with argument %d\n", iSig); } …

Interval Timer Example (cont.) Program testitimer.c (cont.): … int main(void) { int iRet; void (*pfRet)(int); struct itimerval sTimer; pfRet = signal(SIGPROF, myHandler); assert(pfRet != SIG_ERR);

Interval Timer Example (cont.) Program testitimer.c (cont.): … /* Send first signal in 1 second, 0 microseconds. */ sTimer.it_value.tv_sec = 1; sTimer.it_value.tv_usec = 0; /* Send subsequent signals in 1 second, 0 microseconds intervals. */ sTimer.it_interval.tv_sec = 1; sTimer.it_interval.tv_usec = 0; iRet = setitimer(ITIMER_PROF, &sTimer, NULL); assert(iRet != -1); printf("Entering an infinite loop\n"); for (;;) ; return 0; }

Summary Alarms Interval Timers Call alarm() to deliver 14/SIGALRM signals in real/wall-clock time Alarms can be used to implement time-outs Interval Timers Call setitimer() to deliver 27/SIGPROF signals in virtual/CPU time Interval timers are used by execution profilers