Reversible data hiding scheme based on significant-bit-difference expansion Sourse: IET Image Processing ( Volume: 11, Issue: 11, 11 2017 ), Pages 1002.

Slides:



Advertisements
Similar presentations
Reversible Data Hiding Based on Two-Dimensional Prediction Errors
Advertisements

1 Adjustable prediction-based reversible data hiding Authors: Chin-Feng Lee and Hsing-Ling Chen Source: Digital Signal Processing, Vol. 22, No. 6, pp.
1 Reversible image hiding scheme using predictive coding and histogram shifting Source: Signal Processing, vol. 89, no. 6, June 2009, pp Author:
Source: Signal Processing, Vol. 89, Issue 6, June 2009, Pages Author: Piyu Tsai, Yu-Chen Hu, and Hsui-Lien Yeh Speaker: Hon-Hang Chang Date:
Steganography of Reversible Data Hiding Producer: Chia-Chen Lin Speaker: Paul 2013/06/26.
Improved PVO-based reversible data hiding Source: Digital Signal Processing, 2014 Authors: Fei Peng, Xiaolong Li,ng Reporter: Min-Hao Wu.
Reversible Image Watermarking Using Interpolation Technique Source: IEEE Transcation on Information Forensics and Security, Vol. 5, No. 1, March 2010 Authors:
1 Reversible data hiding for high quality images using modification of prediction errors Source: The Journal of Systems and Software, In Press, Corrected.
Reversible image hiding scheme using predictive coding and histogram shifting Source: Authors: Reporter: Date: Signal Processing, Vol.89, Issue 6, pp ,
A lossless data hiding scheme based on three- pixel block differences Ching-Chiuan Lin and Nien-Lin Hsueh Pattern Recognition, Vol. 41(4), April 2008 Pages.
多媒體網路安全實驗室 Source: IEICE Trans. Fundamentals, Vol. E90-A, No. 4, April 2007, pp Authors:Hong Lin Jin, Masaaki Fujiyoshi, Hitoshi Kiya Speaker:Cheng.
1 LSB Matching Revisited Source: IEEE Signal Processing Letters (Accepted for future publication) Authors: Jarno Mielikainen Speaker: Chia-Chun Wu ( 吳佳駿.
1 Reversible visible watermarking and lossless recovery of original images Source: IEEE transactions on circuits and systems for video technology, vol.
1 Adaptive Data Hiding in Edge Areas of Images with Spatial LSB Domain Systems Source: IEEE Transactions on Information Forensics and Security, Vol. 3,
(k, n)-Image Reversible Data Hiding
Reversible Data Hiding in Encrypted Images With Distributed Source Encoding Source: IEEE Transactions on Circuits and Systems for Video Technology Vol.26.
2003/04/291 Hiding data in images by optimal moderately- significant-bit replacement Wang, Ran-Zan, Lin, Chi-Fang, and Lin, Ja-Chen, IEE Electronics Letters,
Reversible Data Hiding in JPEG Images using Ordered Embedding
Source : Signal Processing, Volume 133, April 2017, Pages
Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering Source: Signal Processing: Image Communication.
Source :Journal of visual Communication and Image Representation
Source : Signal Processing, vol. 150, pp ,  September 2018
Hybrid Data Hiding Scheme Using Right-Most Digit Replacement and Adaptive Least Significant Bit for Digital Images Source: Symmetry, vol. 8, no. 6, June.
Yongjian Hu, Member, IEEE, Heung-Kyu Lee, Kaiying Chen, and Jianwei Li
Advisor: Chin-Chen Chang1, 2 Student: Yi-Pei Hsieh2
An efficient reversible data hiding method for AMBTC compressed images
Source: Information Sciences, 2018, accpeted.
Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering Source: Signal Processing: Image Communication.
Source : Signal Processing, vol. 126, pp ,  November 2016
Skewed Histogram Shifting for Reversible Data Hiding using a Pair of Extreme Predictions Source: IEEE Transactions on Circuits and Systems for Video Technology(
Improved joint reversible data hiding in encrypted images
Reversible Data Hiding Scheme Using Two Steganographic Images
An efficient reversible image authentication method using improved PVO and LSB substitution techniques Source : Signal Processing: Image Communication,
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Source: Signal Processing: Image Communication 64 (2018) 78-88
Source:. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL
Source: Signal Processing, Vol. 125, pp , August 2016.
An AMBTC compression based data hiding scheme using pixel value adjusting strategy Sourse: Multidimensional Systems and Signal Processing, Volume 29,
An AMBTC compression based data hiding scheme using pixel value adjusting strategy Sourse: Multidimensional Systems and Signal Processing, Volume 29,
Sourse: IEEE Transactions on Circuits and Systems for Video Technology
Source : Journal of Visual Communication and Image Representation, vol
Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels Source: Journal of Visual Communication and.
Skewed Histogram Shifting for Reversible Data Hiding using a Pair of Extreme Predictions Source: IEEE Transactions on Circuits and Systems for Video Technology(
Dynamic embedding strategy of VQ-based information hiding approach
Information Hiding and Its Applications
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Source : Journal of Visual Communication and Image Representation, vol
Sourse: Multimedia Tools and Applications, 2018, pp 1–17
Partial reversible data hiding scheme using (7, 4) hamming code
High-fidelity reversible data hiding based on pixel-value-ordering and pairwise prediction-error expansion Source: Journal of Visual Communication and.
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Source:Multimedia Tools and Applications, Vol. 77, No. 20, pp , Oct
Partial reversible data hiding scheme using (7, 4) hamming code
New Framework for Reversible Data Hiding in Encrypted Domain
Multi-Tier and Multi-Bit Reversible Data Hiding with Contents Characteristics Source : Journal of Information Hiding and Multimedia Signal Processing, Volume.
Source: J. Vis. Commun. Image R. 31 (2015) 64–74
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
Unconstraint Optimal Selection of Side Information for Histogram Shifting Based Reversible Data Hiding Source:  IEEE Access. March, doi: /ACCESS
Source: Signal Processing Volume 111 June 2015, Pages
Secret Image Sharing Based on Encrypted Pixels
Source: IEEE Access. (2019/05/13). DOI: /ACCESS
Source: Pattern Recognition, Volume 40, Issue 2, February 2007, pp
Pairwise IPVO-Based Reversible Data Hiding
Sourse: Information Sciences, Vol. 494, pp , August 2019
Source: IET Image Processing, Vol. 4, No. 4, Aug. 2010, pp
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Dynamic improved pixel value ordering reversible data hiding
Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering Source: Signal Processing: Image Communication.
Privacy-Preserving Reversible Watermarking for Data Exfiltration Prevention Through Lexicographic Permutations Source: IIH-MSP(2018): Authors:
Adopting secret sharing for reversible data hiding in encrypted images
Presentation transcript:

Reversible data hiding scheme based on significant-bit-difference expansion Sourse: IET Image Processing ( Volume: 11, Issue: 11, 11 2017 ), Pages 1002 – 1014 Authors: Weiqing Wang, Junyong Ye , Tongqing Wang, Weifu Wang Speaker: Guan-Long Li Date: 2017/12/7

Outline Related Work Proposed method Experiment Results Reference Robust lossless image data hiding scheme Proposed method Experiment Results Reference Conclusion

Related Works Robust lossless image data hiding scheme 𝑀 𝑖,𝑗 = 1 𝑚𝑜𝑑 𝑖,2 =𝑚𝑜𝑑(𝑗,2) −1 𝑚𝑜𝑑(𝑖,2)≠𝑚𝑜𝑑(𝑗,2) 𝑎 (𝑘) = 𝑖=1 𝑚 𝑗=1 𝑛 ( 𝑐 𝑘 𝑖,𝑗 ×𝑀(𝑖,𝑗))

Proposed method Secrete data 𝐼 𝐻𝑆𝐵 𝐼′ 𝐻𝑆𝐵 𝐼 𝐿𝑆𝐵 Stego Image Original Image

Proposed method n=3 HSB LSB a7 a6 a5 a4 a3 a2 a1 a0 a7 a6 a5 a4 a3 a2 ------------------------------------ a7 a6 a5 a4 a3 a2 a1 a0 a7 a6 a5 a4 a3 a2 a1 a0 120 n=3 15 1 1 𝑚𝑎𝑥=𝑓𝑙𝑜𝑜𝑟( 255 2 𝑛 ) 𝑚𝑖𝑛=𝑓𝑙𝑜𝑜𝑟 0 2 𝑛 =0

𝐼 𝐿𝑆𝐵 𝑖,𝑗 =𝐼 𝑖,𝑗 − 𝐼 𝐻𝑆𝐵 (𝑖,𝑗)× 2 𝑛 Proposed method 15 14 HSB 120 121 119 122 𝐼 𝐻𝑆𝐵 𝑖,𝑗 =𝑓𝑙𝑜𝑜𝑟 𝐼 𝑖,𝑗 2 𝑛 𝐼 𝐿𝑆𝐵 𝑖,𝑗 =𝐼 𝑖,𝑗 − 𝐼 𝐻𝑆𝐵 (𝑖,𝑗)× 2 𝑛 1 7 2 LSB

Proposed method 15 14 15 -1 𝑑 𝑖,𝑗 = 𝑑 𝑖,1 = 𝐼 𝐻𝑆𝐵 𝑖,1 − 𝐼 𝐻𝑆𝐵 𝑖−1,1 ,𝑖𝑓 𝑗=1 𝑑 𝑖,𝑗 = 𝐼 𝐻𝑆𝐵 𝑖,𝑗 − 𝐼 𝐻𝑆𝐵 𝑖,𝑗−1 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Proposed method Difference-Value intensity Expansion bin a: Maximum b:Second Maximum Embedd bit 1 0 0 1 Expansion bin Shifted bin Unused bin

Proposed method 𝐼 ′ 𝐻𝑆𝐵 𝑖,𝑗 = 𝐼 𝐻𝑆𝐵 𝑖,𝑗−1 +𝑑 𝑖,𝑗 +𝑡, 𝑖𝑓 𝑑 𝑖,𝑗 =𝑏 𝑎𝑛𝑑 𝐼 𝐻𝑆𝐵 𝑖,𝑗−1 +𝑑 𝑖,𝑗 <𝑚𝑎𝑥−1 𝐼 𝐻𝑆𝐵 𝑖,𝑗−1 +𝑑 𝑖,𝑗 −𝑡, 𝑖𝑓 𝑑 𝑖,𝑗 =𝑎 𝑎𝑛𝑑 𝐼 𝐻𝑆𝐵 𝑖,𝑗−1 +𝑑 𝑖,𝑗 >1 𝐼 𝐻𝑆𝐵 𝑖,𝑗−1 +𝑑 𝑖,𝑗 +1, 𝑖𝑓 𝑑 𝑖,𝑗 >𝑏 𝑎𝑛𝑑 𝐼 𝐻𝑆𝐵 𝑖,𝑗−1 +𝑑 𝑖,𝑗 <𝑚𝑎𝑥−1 𝐼 𝐻𝑆𝐵 𝑖,𝑗−1 +𝑑 𝑖,𝑗 −1, 𝑖𝑓 𝑑 𝑖,𝑗 <𝑎 𝑎𝑛𝑑 𝐼 𝐻𝑆𝐵 𝑖,𝑗−1 +𝑑 𝑖,𝑗 >1 𝐼 𝐻𝑆𝐵 𝑖,𝑗−1 +𝑑 𝑖,𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑠 𝐼 ′ 𝐻𝑆𝐵 𝑖,1 = 𝐼 𝐻𝑆𝐵 𝑖−1,1 +𝑑 𝑖,1 +𝑡, 𝑖𝑓 𝑑 𝑖,𝑗 =𝑏 𝑎𝑛𝑑 𝐼 𝐻𝑆𝐵 𝑖−1,1 +𝑑 𝑖,1 <𝑚𝑎𝑥−1 𝐼 𝐻𝑆𝐵 𝑖−1,1 +𝑑 𝑖,1 −𝑡 , 𝑖𝑓 𝑑 𝑖,𝑗 =𝑎 𝑎𝑛𝑑 𝐼 𝐻𝑆𝐵 𝑖−1,1 +𝑑 𝑖,1 >1 𝐼 𝐻𝑆𝐵 𝑖−1,1 +𝑑 𝑖,1 +1, 𝑖𝑓 𝑑 𝑖,𝑗 >𝑏 𝑎𝑛𝑑 𝐼 𝐻𝑆𝐵 𝑖−1,1 +𝑑 𝑖,1 <𝑚𝑎𝑥−1 𝐼 𝐻𝑆𝐵 𝑖−1,1 +𝑑 𝑖,1 −1, 𝑖𝑓 𝑑 𝑖,𝑗 <𝑎 𝑎𝑛𝑑 𝐼 𝐻𝑆𝐵 𝑖−1,1 +𝑑 𝑖,1 >1 𝐼 𝐻𝑆𝐵 𝑖−1,1 +𝑑 𝑖,1 , 𝑜𝑡ℎ𝑒𝑟𝑠

Proposed method 15 14 15 -1 15 14 13 HSB with secret bits 1 a=0 b=1 -1 15 14 13 HSB with secret bits 1 a=0 b=1 Secret bits

Proposed method 15 14 13 120 113 111 122 𝐼 ′ 𝑖,𝑗 = 𝐼 ′ 𝐻𝑆𝐵 𝑖,𝑗 × 2 𝑛 + 𝐼 𝐿𝑆𝐵 (𝑖,𝑗) 1 7 2

Proposed method 𝑑 ′ 𝑖,1 = 𝐼 ′ 𝐻𝑆𝐵 𝑖,1 − 𝐼 ′ 𝐻𝑆𝐵 𝑖−1,1 𝑑 ′ 𝑖,1 = 𝐼 ′ 𝐻𝑆𝐵 𝑖,1 − 𝐼 ′ 𝐻𝑆𝐵 𝑖−1,1 𝑑 ′ 𝑖,𝑗 = 𝐼 ′ 𝐻𝑆𝐵 𝑖,𝑗 − 𝐼 ′ 𝐻𝑆𝐵 𝑖,𝑗−1 𝐼 𝐻𝑆𝐵 𝑖,1 = 𝐼′ 𝐻𝑆𝐵 𝑖−1,𝑗 + 𝑑 ′ 𝑖,1 −1, 𝑖𝑓 𝑑 ′ 𝑖,1 >𝑏+1 𝑎𝑛𝑑 𝐼 ′ 𝐻𝑆𝐵 𝑖−1,1 +𝑑′ 𝑖,1 <255 𝐼′ 𝐻𝑆𝐵 𝑖−1,𝑗 + 𝑑 ′ 𝑖,1 +1, 𝑖𝑓 𝑑 ′ 𝑖,1 <𝑎 𝑎𝑛𝑑 𝐼 ′ 𝐻𝑆𝐵 𝑖−1,1 + 𝑑 ′ 𝑖,1 >0 𝐼′ 𝐻𝑆𝐵 𝑖−1,𝑗 + 𝑑 ′ 𝑖,1 ,𝑜𝑡ℎ𝑒𝑟𝑠 𝐼 𝐻𝑆𝐵 𝑖,𝑗 = 𝐼′ 𝐻𝑆𝐵 𝑖,𝑗−1 + 𝑑 ′ 𝑖,𝑗 −1, 𝑖𝑓 𝑑 ′ 𝑖,𝑗 >𝑏+1 𝑎𝑛𝑑 𝐼 ′ 𝐻𝑆𝐵 𝑖,𝑗−1 +𝑑′ 𝑖,𝑗 <255 𝐼′ 𝐻𝑆𝐵 𝑖,𝑗−1 + 𝑑 ′ 𝑖,𝑗 +1, 𝑖𝑓 𝑑 ′ 𝑖,𝑗 <𝑎 𝑎𝑛𝑑 𝐼 ′ 𝐻𝑆𝐵 𝑖,𝑗−1 + 𝑑 ′ 𝑖,𝑗 >0 𝐼′ 𝐻𝑆𝐵 𝑖,𝑗−1 + 𝑑 ′ 𝑖,𝑗 ,𝑜𝑡ℎ𝑒𝑟𝑠

Proposed method 15 14 13 15 14 120 121 119 122 120 113 111 122 𝑰′ 𝑯𝑺𝑩 𝑰 𝑯𝑺𝑩 15 -1 1 𝑰′ 𝑰 1 7 2 𝒅 ′ (𝒊,𝒋) Secret bits 𝑰 𝑳𝑺𝑩

Experiment Results Various EC values Image n=1 n=2 n=3 n=4 01 7.9 8 8.8 7.5 02 5.2 5.4 6.3 5 03 6.6 6.7 6.4 04 6 7.2 5.9 05 3.5 3.8 5.1 3 06 3.9 3.6 07 4.3 4.1 08 3.7 4.6 3.4 09 6.5 7.4 10 4.9 5.8 The unit of EC is 10,000 bits

Experiment Results Performance evaluation in terms of capacity–distortion curve

Experiment Results Corresponding PSNR values (dB) Capacity(bits) 10,000 20,000 30,000 40,000 Lena 1-PEE 60 56.8 54.6 53.3 proposed 61.6 58.2 55.5 53.7 Baboon 55.9 50.6 - 52.1 Airplane 63.8 60.4 58.3 63.6 61 59.3 57.3 Barbara 59.9 56.7 54.7 53.2 61.58 58.5 55.8 53.8 Elaine 50.5 61.2 56.4 54.9 Lake 58.7 54.2 51.3 54

References [13] Yi, S., Zhou, Y.: ‘Binary-block embedding for reversible data hiding in encrypted images’, Signal Process., 2017, 133, pp. 40–51 [25] Li, X., Li, B., Yang, B., et al.: ‘General framework to histogram-shiftingbased reversible data hiding’, IEEE Signal Process. Lett., 2013, 22, (6), pp. 2181–2191 [34] Ma, X., Pan, Z., Hu, S., et al.: ‘High-fidelity reversible data hiding scheme based on multi-predictor sorting and selecting mechanism’, J. Vis. Commun. Image Represent., 2015, 28, pp. 71–82 [42] Wang, R.-Z., Lin, C.-F., Lin, J.-C.: ‘Hiding data in images by optimal moderately significant-bit replacement’, IEE Electron. Lett., 2000, 36, (25), pp. 2069–2070 [43] Zeng, X.T.: ‘A lossless robust data hiding scheme’, Pattern Recognit., 2010, 43, pp. 1656–1667

Conclusions It exploits the higher pixel-bit-planes with importance within a local neighborhood to construct a more correlated pixel pair sequence, and addresses the question of how to determine the pixels into pairs properly for pairwise SBDE Actually, this paper have the correct concept, but the results are wrong. In the data embedding, I get the different results when I follow the steps.