CS4514 Project 2 Help Session (B07)

Slides:



Advertisements
Similar presentations
TFTP (Trivial File Transfer Protocol)
Advertisements

Intermediate TCP/IP TCP Operation.
I/O Multiplexing Road Map: 1. Motivation 2. Description of I/O multiplexing 3. Scenarios to use I/O multiplexing 4. I/O Models  Blocking I/O  Non-blocking.
Today’s topic Issues about sending structures with TCP. Server design alternatives: concurrent server and multiplexed server. I/O multiplexing.
Global Employee Location Server Jeff Zhou 3/19/2011 CS4516 HELP Session 1 Modified based on CS4514 B05 slides.
Computer Networks Sockets. Sockets and the OS F An end-point for Internet connection –What the application “plugs into” –OS provides Application Programming.
Client 1 Client 2 Server Child Process1 Child Process2 (1) (2) (3) serverbase.txt Note: each child process keeps a separate copy of the DB.
Client 1 Client 2 Server Child Process1 Child Process2 (1) (2) (3) serverbase.txt Note: each child process keeps a separate copy of the DB.
Reliable Networking Tom Roeder CS sp. Last minute questions on Part II?
CS4514-Help Session By Huahui Wu. Description In this project, you are supposed to implement a PAR (Positive Acknowledgement with Retransmission)
Exec function Exec function: - replaces the current process (its code, data, stack & heap segments) with a new program - the new program starts executing.
CS4514 HELP Session 3 Concurrent Server Using Go-Back-N Song Wang 12/08/2003.
Concurrent Server Using Selective Repeat Data Link Layer Mingzhe Li 12/05/2005 CS4514 HELP Session 3.
CS4514 Assignment 2 Help Session – Data Link Layer Client and Server Processes Speaker: Hao Shang Date: Nov. 11th, 2004.
CS4514 HELP Session 3 Concurrent Server Using Go-Back-N Song Wang 02/17/2004.
1 CS4514 – B03 Project 2 Help Session Choong-Soo Lee November 24, 2003.
1 CCNA 2 v3.1 Module Intermediate TCP/IP CCNA 2 Module 10.
Network LayerDatalink LayerPhysical LayerNetwork LayerDatalink LayerPhysical Layer ClientServer Framework.
TCP. Learning objectives Reliable Transport in TCP TCP flow and Congestion Control.
WXES2106 Network Technology Semester /2005 Chapter 8 Intermediate TCP CCNA2: Module 10.
1 CS4514 Project 2 Help Session (B05) Mingzhe Li Nov 10, 2005.
Project 2: A P2P Chat Application Review Ananth Rao.
CS4516: Medical Examiner Client/Server Evan Frenn 1.
1 Semester 2 Module 10 Intermediate TCP/IP Yuda college of business James Chen
COMT 4291 Communications Protocols and TCP/IP COMT 429.
CS 4396 Computer Networks Lab
1 CS3516 Project 3 Help Session (B14) Dongqing Xiao Dec 04, 2014.
TCP1 Transmission Control Protocol (TCP). TCP2 Outline Transmission Control Protocol.
Review: How to create a TCP end point? What is the right format for sin_port and sin_addr in the sockaddr_in data structure? How many different ways we.
Chapter 5 Peer-to-Peer Protocols and Data Link Layer PART I: Peer-to-Peer Protocols ARQ Protocols and Reliable Data Transfer Flow Control.
TELE 402 Lecture 4: I/O multi … 1 Overview Last Lecture –TCP socket and Client-Server example –Source: Chapters 4&5 of Stevens’ book This Lecture –I/O.
1 I/O Multiplexing We often need to be able to monitor multiple descriptors:We often need to be able to monitor multiple descriptors: –a generic TCP client.
CSCE 515: Computer Network Programming Select Wenyuan Xu Department of Computer Science and Engineering.
I/O Multiplexing. TCP Echo Client: I/O operation is sequential !! tcpcliserv/tcpcli01.c: lib/str_cli.c: TCP Client TCP Server stdin stdout fgets fputs.
1 TCP - Part II Relates to Lab 5. This is an extended module that covers TCP data transport, and flow control, congestion control, and error control in.
Forward Error Correction vs. Active Retransmit Requests in Wireless Networks Robbert Haarman.
I/O Multiplexing. What is I/O multiplexing? When an application needs to handle multiple I/O descriptors at the same time –E.g. file and socket descriptors,
1 CS 4396 Computer Networks Lab TCP – Part II. 2 Flow Control Congestion Control Retransmission Timeout TCP:
Today’s topic: UDP Reliable communication over UDP.
CMPT 471 Networking II Network Programming © Janice Regan,
Transport Layer: Sliding Window Reliability
1 CS3516 Project 3 Help Session (A15) Dongqing Xiao Sep 30th,2015.
© 2002, Cisco Systems, Inc. All rights reserved..
CS 145A Reliable Communication Netlab.caltech.edu/course.
Computer Networking Lecture 16 – Reliable Transport.
Chapter 3: The Data Link Layer –to achieve reliable, efficient communication between two physically connected machines. –Design issues: services interface.
TCP over Wireless PROF. MICHAEL TSAI 2016/6/3. TCP Congestion Control (TCP Tahoe) Only ACK correctly received packets Congestion Window Size: Maximum.
Chapter 3 Transport Layer
I/O Multiplexing.
TCP - Part III TCP Timers Selective Acknowledgements.
TCP Wrap-up TCP Timers Selective Acknowledgements.
© 2003, Cisco Systems, Inc. All rights reserved.
Concurrent Server Using Go-Back-N
Introduction of Transport Protocols
Transport Layer Our goals:
TCP - Part II Relates to Lab 5. This is an extended module that covers TCP flow control, congestion control, and error control in TCP.
Overview Jaringan Komputer (2)
CS4516 Program 2 Help Session (C10)
Chapter 5 Peer-to-Peer Protocols and Data Link Layer
CS4470 Computer Networking Protocols
CSS432 (Link Level Protocols) Reliable Transmission Textbook Ch 2.5
CS4470 Computer Networking Protocols
Concurrent Server (in APP) Using Go-Back-N (in DLL)
The Transport Layer Reliability
Simulation of Datalink Layer Communication Speaker: Jae Chung
Transport Protocols: TCP Segments, Flow control and Connection Setup
Chapter 5 Peer-to-Peer Protocols and Data Link Layer
Lecture 4 Peer-to-Peer Protocols and Data Link Layer
I/O Multiplexing We often need to be able to monitor multiple descriptors: a generic TCP client (like telnet) need to be able to handle unexpected situations,
Transport Protocols: TCP Segments, Flow control and Connection Setup
Presentation transcript:

CS4514 Project 2 Help Session (B07) Feng Li Nov 8, 2007

Description The goal is to implement a Positive Acknowledgement with Retransmission (PAR) protocol on top of an emulated physical layer. The receiver acknowledges only the correctly received segments and the sender uses timeout to detect and send the lost segment. Physical layer is emulated by a TCP connection plus an error module. Your programs should compile and work on “ccc[1-6].wpi.edu”

Framework Client Server Network Layer Network Layer Data Link Layer Physical Layer Physical Layer Do NOT attempt to put everything in one big main()

Network Layer Client Server Network Layer Network Layer photo[1-5].jpg photonew[1-5].jpg read (block) write (block) Network Layer Network Layer nwl_recv(pkt) nwl_recv(ack) Network layer ack Network layer ack pkt pkt Packet size: 180 bytes

Data Link Layer Client Server Network Layer Network Layer Network layer ack Network layer ack pkt dll_send(pkt) dll_send(pkt) Data Link Layer Data Link Layer dll_recv(frm) dll_recv(frm) ack/frm (Network Layer ack) frm frm ack/frm (Network Layer ack) Client link layer does not need to ACK “Network Layer ACK” frame!

Physical Layer Client Server Datalink Layer Datalink Layer ack frm phl_send() phl_send() Physical Layer Physical Layer phl_recv() phl_recv() TCP Connection

Client: dll_send(pkt, …) 1. Read a block and split into payloads phl_send(frm, …): Force bit error every 7-th Frame 2. For each payload 2.1 Create Frame (frm) 2.2.1 Timeout Handler: phl_send(frm, …) 2.2 Start a Timer 2.3 phl_send(frm, …) 2.4 phl_recv(ack/frm,…) ack/frm? 2.4.1 nwl_ack received frm ack ack ok? no yes client.log 3. Waiting for Network Layer ack: if (!nwl_ack) phl_recv(frm,…)

Create Frame Datafield 1. Compute Seq Number, Frame Type and End-Of-Packet (EOP) bytes Seq FT EOP Datafield 2. Error-Detection (ED) bytes (XOR on Seq + FT + EOP + Data) Seq FT EOP Datafield ED 2 Bytes 1 Byte 1 Byte <=100 Bytes 2 Bytes EOP: End of Packet ED: Error Detection FT: Frame Type Seq: Sequence Num

Server: dll_recv(frm, …) 1. Compute ED byte phl_send(ack, …): Force bit error every 11-th Frame ED ok? Return no yes Dup? Drop frm yes no server.log 2. Create ACK Frame (ack) 3. phl_send(ack, …) no EOP? 4. Reassemble the packet yes 5. nwl_recv(pkt, …)

Create ACK Frame 1. Compute Seq Number and Frame Type Seq FT 2. Error-Detection (ED) bytes (ED = Seq) Seq FT ED 2 Bytes 1 Byte 2 Bytes EOP: End of Packet ED: Error Detection FT: Frame Type Seq: Sequence Num

Timers The client uses a timer to detect a frame loss. The client sets a timer when it transmits a frame. When the timer expires, the client retransmits the frame. Two kinds of timer Select : easier to use Signal and Timer : nicer implementation

Select: Monitor Given FDs (SDs) # include <sys/select.h> # include <sys/time.h> int select (int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset, const struct timeval *timeout); struct timeval { long tv_sec; /* seconds */ long tv_usec; /* microseconds */ }

Example: Select fd_set bvfdRead; int readyNo; struct timeval timeout; int sockfd; while (1) { timeout.tv_sec = 0; timeout.tv_usec = 500; FD_ZERO(&bvfdRead); FD_SET(sockfd, &bvfdRead); readyNo = select(sockfd+1, &bvfdRead, 0, 0, &timeout); if(readyNo < 0) error_handler(); else if(readyNo == 0) timeout_handler(); else { FD_ZERO(&bvfdRead); receive_handler(); }

Signal and Timer: Soft Interrupt Head files #include <signal.h> #include <time.h> Register a function to TIMEOUT signal signal (SIGALRM, timeout); Create a timer and begin to run timer_create(); timer_settime(); Compile with option “-lrt” (link runtime library)

Example: Signal and Timer timer_t timer_id; void timeout(int signal_number){ printf("\n SIGNUM: %d\n", signal_number); exit(0); } void start_timer(){ struct itimerspec time_val; signal (SIGALRM, timeout); timer_create( CLOCK_REALTIME, NULL, &timer_id); /* set timeout to 1 second */ time_val.it_value.tv_sec = 1; time_val.it_value.tv_nsec = 0; time_val.it_interval.tv_sec = 0; time_val.it_interval.tv_nsec = 0; timer_settime(timer_id, 0, &time_val, NULL); } main(){ start_timer(); while(1);

Open a File Open a file for read: int rfile; if ((rfile = open(“filename1”, O_RDONLY)) < 0) { perror("Input File Open Error"); exit(1); } Open a file for write (create if not exist): int ofile; if ((ofile = open(“filename2”, O_WRONLY|O_CREAT|O_TRUNC, S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP)) < 0) perror("Output File Open Error");

File Read Read from file if (rd_size < 0) while ((rd_size = read(rfile, buf, 180)) > 0) { do something with “buf” here } if (rd_size < 0) perror("File Read Error"); exit(1); else printf ("Reach the end of the file\n");

File Write/Close Write to File Close files if ((wr_size = write(ofile, buf, rd_size)) < 0) { perror("Write Error:"); exit(1); } Close files close(rfile); close(ofile);

Display Image in Linux Make sure you have “X forwarding” with your ssh client And you need have an Xserver (X-Win32 or etc.) running on you windows computer. The image display is not required for the Project. These code tested on ccc[1-6].wpi.edu if (fork() == 0) { execl("/usr/local/bin/xv", "xv", “image.jpg”, NULL); } else wait(NULL); printf("Done display! \n");

Thanks! and Questions?