Volume 20, Issue 1, Pages (January 2013)

Slides:



Advertisements
Similar presentations
Debosmita Sardar, Zhenjian Lin, Eric W. Schmidt  Chemistry & Biology 
Advertisements

Volume 23, Issue 4, Pages (April 2016)
Volume 23, Issue 4, Pages (April 2016)
One-Pot Synthesis of Azoline-Containing Peptides in a Cell-free Translation System Integrated with a Posttranslational Cyclodehydratase  Yuki Goto, Yumi.
Volume 23, Issue 8, Pages (August 2016)
Travis S. Young, Pieter C. Dorrestein, Christopher T. Walsh 
Foundations for Directed Alkaloid Biosynthesis
Volume 20, Issue 8, Pages (August 2013)
Volume 20, Issue 10, Pages (October 2013)
Volume 15, Issue 2, Pages (February 2008)
Adding Specificity to Artificial Transcription Activators
Volume 17, Issue 4, Pages (April 2010)
Marcel Zimmermann, Julian D. Hegemann, Xiulan Xie, Mohamed A. Marahiel 
Volume 17, Issue 4, Pages (April 2010)
Volume 20, Issue 6, Pages (June 2013)
Volume 13, Issue 4, Pages (April 2006)
Volume 20, Issue 8, Pages (August 2013)
An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide  Cheng Wang, Shane.
Biosynthesis of Actinorhodin and Related Antibiotics: Discovery of Alternative Routes for Quinone Formation Encoded in the act Gene Cluster  Susumu Okamoto,
Volume 18, Issue 9, Pages (September 2011)
Complementary Structural Mass Spectrometry Techniques Reveal Local Dynamics in Functionally Important Regions of a Metastable Serpin  Xiaojing Zheng,
Messenger RNA-Programmed Incorporation of Multiple N-Methyl-Amino Acids into Linear and Cyclic Peptides  Takashi Kawakami, Hiroshi Murakami, Hiroaki Suga 
Volume 24, Issue 10, Pages e7 (October 2017)
Volume 17, Issue 10, Pages (October 2010)
Volume 22, Issue 4, Pages (April 2015)
Redesign of a Dioxygenase in Morphine Biosynthesis
Identification and Characterization of the Lysobactin Biosynthetic Gene Cluster Reveals Mechanistic Insights into an Unusual Termination Module Architecture 
Volume 20, Issue 12, Pages (December 2013)
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Kevin J. Forsberg, Sanket Patel, Timothy A. Wencewicz, Gautam Dantas 
Volume 19, Issue 3, Pages (March 2012)
Insights into the Generation of Structural Diversity in a tRNA-Dependent Pathway for Highly Modified Bioactive Cyclic Dipeptides  Tobias W. Giessen, Alexander M.
Volume 24, Issue 6, Pages e7 (June 2017)
Volume 20, Issue 12, Pages (December 2013)
Volume 12, Issue 12, Pages (December 2005)
Liujie Huo, Shwan Rachid, Marc Stadler, Silke C. Wenzel, Rolf Müller 
Shiela E. Unkles, Vito Valiante, Derek J. Mattern, Axel A. Brakhage 
Yi-Ling Du, Doralyn S. Dalisay, Raymond J. Andersen, Katherine S. Ryan 
Volume 22, Issue 2, Pages (February 2015)
Volume 18, Issue 4, Pages (April 2011)
Volume 14, Issue 2, Pages (February 2007)
Volume 16, Issue 5, Pages (May 2009)
An Artificial Pathway to 3,4-Dihydroxybenzoic Acid Allows Generation of New Aminocoumarin Antibiotic Recognized by Catechol Transporters of E. coli  Silke.
Volume 22, Issue 11, Pages (November 2015)
Tandem Enzymatic Oxygenations in Biosynthesis of Epoxyquinone Pharmacophore of Manumycin-type Metabolites  Zhe Rui, Moriah Sandy, Brian Jung, Wenjun Zhang 
Foundations for Directed Alkaloid Biosynthesis
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Volume 18, Issue 1, Pages (January 2011)
Volume 21, Issue 8, Pages (August 2014)
One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool  Sina Rütschlin, Sandra Gunesch, Thomas.
Volume 17, Issue 4, Pages (April 2010)
Volume 15, Issue 6, Pages (June 2008)
Volume 18, Issue 4, Pages (April 2011)
Volume 18, Issue 12, Pages (December 2011)
Volume 18, Issue 11, Pages (November 2011)
Volume 24, Issue 2, Pages (February 2017)
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids  Peter A. Jordan,
New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post- translationally Modified Peptide Natural Products  Manuel A. Ortega, Wilfred A.
Dual Carbamoylations on the Polyketide and Glycosyl Moiety by Asm21 Result in Extended Ansamitocin Biosynthesis  Yan Li, Peiji Zhao, Qianjin Kang, Juan.
Volume 21, Issue 9, Pages (September 2014)
Volume 18, Issue 1, Pages (January 2011)
Volume 13, Issue 7, Pages (July 2006)
Volume 20, Issue 10, Pages (October 2013)
Cloning, Heterologous Expression, and Characterization of the Gene Cluster Required for Gougerotin Biosynthesis  Guoqing Niu, Lei Li, Junhong Wei, Huarong.
Volume 18, Issue 11, Pages (November 2011)
Volume 12, Issue 3, Pages (March 2005)
Volume 14, Issue 9, Pages (September 2007)
Debosmita Sardar, Zhenjian Lin, Eric W. Schmidt  Chemistry & Biology 
Volume 21, Issue 9, Pages (September 2014)
Volume 12, Issue 10, Pages (October 2005)
Presentation transcript:

Volume 20, Issue 1, Pages 111-122 (January 2013) Heterologous Expression and Engineering Studies of Labyrinthopeptins, Class III Lantibiotics from Actinomadura namibiensis  Joanna M. Krawczyk, Ginka H. Völler, Bartlomiej Krawczyk, Julian Kretz, Mark Brönstrup, Roderich D. Süssmuth  Chemistry & Biology  Volume 20, Issue 1, Pages 111-122 (January 2013) DOI: 10.1016/j.chembiol.2012.10.023 Copyright © 2013 Elsevier Ltd Terms and Conditions

Chemistry & Biology 2013 20, 111-122DOI: (10. 1016/j. chembiol. 2012 Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 1 Structures and Biosynthesis of Labyrinthopeptins (A) Structures and ring assignments of labyrinthopeptin A1 and A2 (leader peptide sequence given as a one-letter code). (B) Organization of the labyrinthopeptin (lab) gene cluster with genes coding for the structural genes labA1/A2, the modifying enzyme labKC, and transporters labT1/T2. (C) Structure of labionin (Lab) and lanthionine (Lan). (D) Alignment of the core regions of precursor peptides belonging to class III gene clusters with putative ring topologies of labyrinthopeptins (conserved Ser/Ser/Cys motif is highlighted). Chemistry & Biology 2013 20, 111-122DOI: (10.1016/j.chembiol.2012.10.023) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 2 Expression of Labyrinthopeptin Variants in S. lividans (A) Vector pUWLab used for expression in Streptomyces hosts. (B) Detection of the labyrinthopeptin derivatives D-, AD-labyrinthopeptin A1, and NR-labyrinthopeptin A2 from liquid cultures of S. lividans/pUWLab (9d, YEME medium). Total ion chromatogram (TIC, QTrap). (C) Extracted Ion Chromatogram (EIC, QTrap) over the mass range m/z 1,095.5–1,096.5 corresponding to doubly charged D-labyrinthopeptin A1 and m/z 1,097.5–1,098.5 corresponding to doubly charged NR-labyrinthopeptin A2 (see Table S1). The molecular masses of labyrinthopeptin A1 and A2 were not found in the culture filtrates. Chemistry & Biology 2013 20, 111-122DOI: (10.1016/j.chembiol.2012.10.023) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 3 Engineering Studies on the Leader Peptide toward Proper Processing by the Proteolytic System of S. lividans Schematic representations of precursor peptide genes and corresponding product detection by LC-ESI-Orbitrap-MS. (A) S. lividans/pLab producing AD-, D-labyrinthopeptin A1, and NR-labyrinthopeptin A2. (B) S. lividans/pLab_SG2 producing labyrinthopeptin A1 and M-labyrinthopeptin A1 (see also Figures S1, S3, and S4). (C) S. lividans/pLab_SG6 producing AM-, M-, and labyrinthopeptin A2 and ENR-, NR-, and R-labyrinthopeptin A1 (Figures S2 and S3). Chemistry & Biology 2013 20, 111-122DOI: (10.1016/j.chembiol.2012.10.023) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 4 Labyrinthopeptin Mutants Expressed in S. lividans (A) Concept of performed modifications (for cloning strategy, see Figure S5 and Tables S3 and S4). (B) Overview of Ala exchange mutagenesis performed on LabA1 and LabA2. Observed production levels are represented (gray, >5 mg/l; white, <5 mg/l; white with dotted line, no production). (C) Overview of prepared mutants (see also Figure S6). Expression of the peptide was evaluated by high-resolving HPLC-MS (detected mutants marked with tick, mutants not detected marked with cross; see Table S2 for observed masses and Figure S7 for MS/MS spectra). Chemistry & Biology 2013 20, 111-122DOI: (10.1016/j.chembiol.2012.10.023) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 5 LC-ESI-MS Spectra of In Vitro Conversion of Selected LabA1 Mutants Comparison of unmodified peptide (upper spectra) and processed peptide (lower spectra). Full processing is represented by the LabA1 peptide and LabA1_N2insA, whereas processing of other peptides results in accumulation of intermediates (indicated masses correspond to most abundant species). See also Figures S8–S10). Chemistry & Biology 2013 20, 111-122DOI: (10.1016/j.chembiol.2012.10.023) Copyright © 2013 Elsevier Ltd Terms and Conditions