Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST by Chih-Chien Tsai, Yann-Jang.

Slides:



Advertisements
Similar presentations
From: MicroRNA let-7 Regulates 3T3-L1 Adipogenesis
Advertisements

Repression of COUP-TFI Improves Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Insulin-Producing Cells  Tao Zhang, Xiao-Hang Li, Dian-Bao.
Aldehyde Dehydrogenase 1A1 Possesses Stem-Like Properties and Predicts Lung Cancer Patient Outcome  Xiao Li, MD, Liyan Wan, MD, Jian Geng, MD, Chin-Lee.
Up-Regulation of Activating Transcription Factor-5 Suppresses SAP Expression to Activate T Cells in Hemophagocytic Syndrome Associated with Epstein-Barr.
by Elena A. Federzoni, Peter J. M. Valk, Bruce E
Volume 15, Issue 6, Pages (June 2009)
CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16)‏ by Daniel.
by Benjamin J. Frisch, John M. Ashton, Lianping Xing, Michael W
The effect of human tissue factor pathway inhibitor-2 on the growth and metastasis of fibrosarcoma tumors in athymic mice by Hitendra Singh Chand, Xin.
Long-term imatinib therapy promotes bone formation in CML patients
Twist-related protein 1 negatively regulated osteoblastic transdifferentiation of human aortic valve interstitial cells by directly inhibiting runt-related.
Regulation of mesenchymal stem cell chondrogenesis by glucose through protein kinase C/transforming growth factor signaling  T.-L. Tsai, P.A. Manner,
NF-κB Accumulation Associated with COL1A1 Transactivators Defects during Chronological Aging Represses Type I Collagen Expression through a –112/–61-bp.
Volume 81, Issue 1, Pages (January 2012)
FOG-1 represses GATA-1-dependent FcϵRI β-chain transcription: transcriptional mechanism of mast-cell-specific gene expression in mice by Keiko Maeda, Chiharu.
Overexpression of ornithine decarboxylase enhances endothelial proliferation by suppressing endostatin expression by Takahiro Nemoto, Hisae Hori, Masataka.
Volume 131, Issue 2, Pages (August 2006)
Volume 7, Issue 2, Pages (August 2016)
MafB negatively regulates RANKL-mediated osteoclast differentiation
Volume 55, Issue 1, Pages (July 2014)
Identification of Bone Marrow-Derived Soluble Factors Regulating Human Mesenchymal Stem Cells for Bone Regeneration  Tsung-Lin Tsai, Wan-Ju Li  Stem Cell.
by Silke Huber, Reinhard Hoffmann, Femke Muskens, and David Voehringer
Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition by Jinsong Hu, Nana Dang, Eline Menu, Elke De Bryune, Dehui Xu, Ben Van.
Role of hypoxia-inducible factor-1 alpha in the regulation of plasminogen activator activity in rat knee joint chondrocytes  G. Zhu, Y. Tang, X. Liang,
PTF1α/p48 and cell proliferation
Bone Marrow-Derived Mesenchymal Stem Cells Expressing Thioredoxin 1 Attenuate Bleomycin-Induced Skin Fibrosis and Oxidative Stress in Scleroderma  Miao.
Volume 47, Issue 2, Pages (July 2012)
CtBP1 Overexpression in Keratinocytes Perturbs Skin Homeostasis
by Shrikanth P. Hegde, JingFeng Zhao, Richard A. Ashmun, and Linda H
Aldehyde Dehydrogenase 1A1 Possesses Stem-Like Properties and Predicts Lung Cancer Patient Outcome  Xiao Li, MD, Liyan Wan, MD, Jian Geng, MD, Chin-Lee.
HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells Cell Physiol.
Volume 6, Issue 4, Pages (April 2016)
Volume 6, Issue 1, Pages (January 2014)
Isolation of multipotent mesenchymal stem cells from umbilical cord blood by Oscar K. Lee, Tom K. Kuo, Wei-Ming Chen, Kuan-Der Lee, Shie-Liang Hsieh, and.
Valentina Manfé, Edyta Biskup, Peter Johansen, Maria R
Glucosamine promotes chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits MMP-13 expression and matrix degradation  A.
Spleen Tyrosine Kinase Mediates EGFR Signaling to Regulate Keratinocyte Terminal Differentiation  Nan-Lin Wu, Duen-Yi Huang, Li-Fang Wang, Reiji Kannagi,
by Hairui Su, Chiao-Wang Sun, Szu-Mam Liu, Xin He, Hao Hu, Kevin M
Volume 22, Issue 10, Pages (October 2014)
MiR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53 by Francisco Navarro, David Gutman, Eti Meire, Mario Cáceres,
Dynamic change of transcription pausing through modulating NELF protein stability regulates granulocytic differentiation by Xiuli Liu, Aishwarya A. Gogate,
Volume 75, Issue 12, Pages (June 2009)
Volume 18, Issue 13, Pages (March 2017)
Molecular Therapy - Nucleic Acids
A predominantly articular cartilage-associated gene, SCRG1, is induced by glucocorticoid and stimulates chondrogenesis in vitro  Kensuke Ochi, M.D., Ph.D.,
Volume 9, Issue 6, Pages (June 2009)
Volume 11, Issue 1, Pages (July 2012)
Volume 43, Issue 5, Pages (September 2011)
Volume 24, Issue 2, Pages (February 2016)
Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis by Tomohiro Umezu, Satoshi Imanishi, Kenko.
FOXO3a Is Activated in Response to Hypoxic Stress and Inhibits HIF1-Induced Apoptosis via Regulation of CITED2  Walbert J. Bakker, Isaac S. Harris, Tak.
Volume 6, Issue 1, Pages (January 2014)
Volume 14, Issue 5, Pages (November 2011)
Promotion Effects of miR-375 on the Osteogenic Differentiation of Human Adipose- Derived Mesenchymal Stem Cells  Si Chen, Yunfei Zheng, Shan Zhang, Lingfei.
Myeloma cell–derived Runx2 promotes myeloma progression in bone
Volume 3, Issue 6, Pages (December 2014)
GRM7 Regulates Embryonic Neurogenesis via CREB and YAP
Identification of White Adipocyte Progenitor Cells In Vivo
Volume 17, Issue 2, Pages (February 2009)
Twist1 regulates embryonic hematopoietic differentiation through binding to Myb and Gata2 promoter regions by Kasem Kulkeaw, Tomoko Inoue, Tadafumi Iino,
Volume 20, Issue 13, Pages (September 2017)
Volume 4, Issue 3, Pages (March 2015)
Repression of COUP-TFI Improves Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Insulin-Producing Cells  Tao Zhang, Xiao-Hang Li, Dian-Bao.
P300 depletion is lethal in cancer cells harboring loss-of-function mutations in CBP. A, synthetic-lethal effects assessed by colony formation assay. p300.
Transcriptional Repression of miR-34 Family Contributes to p63-Mediated Cell Cycle Progression in Epidermal Cells  Dario Antonini, Monia T. Russo, Laura.
Volume 20, Issue 13, Pages (September 2017)
Volume 4, Issue 4, Pages (April 2015)
Volume 8, Issue 6, Pages (June 2017)
Volume 55, Issue 1, Pages (July 2014)
Volume 23, Issue 4, Pages (April 2015)
Presentation transcript:

Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST by Chih-Chien Tsai, Yann-Jang Chen, Tu-Lai Yew, Ling-Lan Chen, Jir-You Wang, Chao-Hua Chiu, and Shih-Chieh Hung Blood Volume 117(2):459-469 January 13, 2011 ©2011 by American Society of Hematology

Hypoxic culture increases expansion efficiency and decreases in senescence. Hypoxic culture increases expansion efficiency and decreases in senescence. Cells were seeded at 50 cells/cm2 and cultured under normoxic and hypoxic conditions. After 12 days of culture, the cells were recovered and reseeded at 50 cells/cm2 and cultured under the same conditions. Cell expansion rate (A) and population doubling time (B) for each passage were calculated. Normoxic culture decreases in cell expansion rate and increases in population doubling time as the increase of passage number (Pn: Passage No). (C) Normoxic and hypoxic cells were incorporated with BrdU for 18 hours and then detected by flow cytometry. Hypoxic cells increase in BrdU incorporation rate compared with normoxic cells. (D) Photomicrographs (original magnifications, 10×/0.25 NA dry objective) of normoxic and hypoxic cells were captured using an Olympus IX70 inverted phase contrast/fluorescence microscope equipped with an Olympus DP70 digital camera (Olympus Japan) and analyzed with the Zeiss AxioVision 4.4 software. Hypoxic cells increase in cell size and become large and flat after expansion compared with hypoxic cells. (E) Cells expanded under normoxic and hypoxic conditions were stained with β-galactosidase (β-gal). Normoxic cells increase in the percentage of β-gal expression compared with hypoxic cells. (F) Western blotting and quantification for senescence marker protein-30 (SMP-30). After expansion, normoxic cells decrease in SMP-30 level, while hypoxic cells increase the expression. (G) Real time-PCR (top panel) and quantitative real time-PCR (bottom panel) analysis for markers of senescence. After expansion, the expression of senescence-related genes significantly increases under normoxic conditions compared with hypoxic conditions. Values are mean + SD; *P < .05 and **P < .01 indicate significant variance (independent t test) between normoxia (Nor) and hypoxia (Hyp). Bar = 50 μm. Chih-Chien Tsai et al. Blood 2011;117:459-469 ©2011 by American Society of Hematology

Hypoxic culture increases in stem cell properties. Hypoxic culture increases in stem cell properties. Cells were seeded at 50 cells/cm2 and expanded under normoxic and hypoxic conditions. (A) Flow cytometry for detecting surface CD markers. Cells under normoxic and hypoxic conditions have the same profile of surface CD markers. (B-C) Hypoxic cells increase in differentiation potential into osteoblasts, adipocytes and chondrocytes. (B) Normoxic and hypoxic cells at passage 6 were induced to differentiate to osteoblasts and adipocytes for 3 weeks, and stained by ARS and Oil Red O, respectively. Stained dye was extracted and OD values were measured. (C) Normoxic and hypoxic cells at passage 6 were induced to differentiate to chondrocytes for 3 weeks, and Alcian Blue staining and immunohistochemical study for collagen II and X were performed. Quantitative data performed by the computerized image analysis show hypoxic cells increase in Alcian Blue staining and IHC for collagen II and X. Values are mean + SD; *P < .05 and **P < .01 indicate significant variance (independent t test) between normoxic and hypoxic groups. Bar = 20 μm. Chih-Chien Tsai et al. Blood 2011;117:459-469 ©2011 by American Society of Hematology

HIF-TWIST inhibits p21 expression via suppressing E2A protein level and activity. HIF-TWIST inhibits p21 expression via suppressing E2A protein level and activity. (A) Analysis for cell-cycle distribution in normoxic and hypoxic cells by propidium iodide (PI) staining followed by flow cytometric analysis. G0/G1 phase is reduced but S and G2/M phases are increased in hypoxic cells compared with normoxic cells. (B) Western blotting for cell-cycle-related proteins. Hypoxic cells decrease in p21 protein level compared with normoxic cells. (C) Western blotting and (D) quantitative RT-PCR for E2A expression. After expansion, normoxic cells increase in E2A protein and mRNA levels compared with hypoxic cells. (E) Western blotting for HIF-1α and TWIST. Expression of HIF-1 and TWIST are decreased in normoxic cells compared with hypoxic cells. (F) Cell lysates were detected by Western blotting. Compared with control vectors, overexpression of TWIST in normoxic cells inhibits the expression of p21 and E2A, and siRNAs against TWIST in hypoxic cells induces p21 and E2A expression. The results shown here are representative of 3 independent experiments. Values are mean + SD; *P < .05 and **P < .01 indicate significant variance (independent t test) between normoxic and hypoxic groups. Chih-Chien Tsai et al. Blood 2011;117:459-469 ©2011 by American Society of Hematology

TWIST directly inhibits E2A transcription by binding to E-box motif in E2A promoter. TWIST directly inhibits E2A transcription by binding to E-box motif in E2A promoter. (A) Genomic organization of the region flanking the promoter region of human E2A (top panel) and the schematic representation of the pGL3-E2A reporter construct. Transcription start site, TSS. Reporter assays showing, in immortalized MSCs (B) or 293T (C), TWIST represses the E2A promoter in a dose dependent manner (n = 3). β-galactosidase was used as a control of transfection efficiency. (D) ChIP analysis of immortalized MSCs after transfection of pFLAG-TWIST. The chromatin was incubated either without antibodies, with an anti-TWIST antibody or with an isotype IgG antibody. Fragments of the E2-(147bp) and E5-(115bp) box in the E2A promoter were amplified by PCR (left panel) and were also quantified with quantitative RT-PCR (right panel). Input, 2% of total input lysate. Results are shown as the mean ± SD values (black bar for E2 box; white bar for E5 box). (E) Mutational analysis of E2-box and E5-box sites in the E2A promoter in 293T cells. Reporter constructs containing wild-type E2A (WT), E2-box (E2M) or E5-box (E5M) mutations, or double mutations (E2E5M) were generated and used to analyze the importance of these sites in mediating repression by TWIST (n = 3). (F) Truncation of the bHLH domain (tbTWIST) inhibits TWIST repression of E2A promoter (n = 3). Each ratio was normalized to the control (pGL3 basic vector), and significance was determined by Student t test. *P < .05, **P < .01 vs control. Chih-Chien Tsai et al. Blood 2011;117:459-469 ©2011 by American Society of Hematology

Hypoxia or HIF-TWIST increases stem cell properties via suppressing p21. Hypoxia or HIF-TWIST increases stem cell properties via suppressing p21. (A) siRNA against E2A in normoxic cells decreases the expression of p21. (B) siRNA against p21 in normoxic cells increases cell growth. Normoxic cells were cultured 12 days after p21 knockdown in low-density culture and cell numbers were counted. (C) Normoxic cells at passage 6 were stably transfected with scrambled or p21 siRNA, followed by differentiation into osteoblasts, adipocytes and chondrocytes for 3 weeks, and achievements of differentiation were analyzed by staining with ARS, Oil Red O and Alcian Blue, respectively. OD values of ARS and Oil Red O were analyzed for quantifying osteoblast and adipocyte differentiation, respectively. Knockdown of p21 increases the differentiation potential to osteoblasts, adipocytes and chondrocytes. Bar = 50 μm. Chih-Chien Tsai et al. Blood 2011;117:459-469 ©2011 by American Society of Hematology

Safety and efficiency of hypoxic culture. Safety and efficiency of hypoxic culture. (A) Karyotyping analysis shows hypoxic MSCs have normal karyotype. (B) For in vivo bone formation, cells were delivered in ceramic cube and induced in osteogenic medium for one week followed by transplantation under beneath the dorsal skin of NOD-SCID mice for 4 weeks. Mallory trichrome staining (left panel) shows hypoxic cells increase in collagen synthesis. Micro-CT (right top panel) shows hypoxic cells increase in trabecular formation. DEXA (right bottom panel) shows hypoxic cells increase in bone mineral density. (C) For in vivo fat formation, cells were mixed with basic FGF and transplanted in NOD-SCID mice for 4 weeks. Oil Red O staining shows hypoxic cells increase in the accumulation of fat droplets. (D) For in vivo cartilage formation, cells were encapsulated in alginate beads and induced in chondrogenic medium for one week followed by transplantation into NOD-SCID mice for 4 weeks. Alcian Blue staining and immunohistochemistry for type II collagen demonstrate hypoxic cells increase in the synthesis of proteoglycan and type II collagen. Bar = 50 μm. Chih-Chien Tsai et al. Blood 2011;117:459-469 ©2011 by American Society of Hematology

Hypoxic cells increase in vivo bone repairing ability. Hypoxic cells increase in vivo bone repairing ability. Calvarial defects were implanted with hypoxic (Hyp) or normoxic cells (Nor). (A) Radiographic images and densitometric analysis were performed at 6 weeks. (B) Micro-CT 3D reconstruction imaging and (C) quantitation for bone volume, bone mineral content (BMC), and bone mineral density (BMD) of newly formed tissues were performed at 6 weeks. The data are expressed as mean ± SEM. Asterisks indicate significant differences: *P < .05, **P < .01, ***P < .005. (D) Samples were harvested for histologic analysis 6 weeks later. Hematoxylin and eosin staining (H&E) for morphologic evaluation (the rectal angle area in the top panel is magnified in the middle panel) and Mallory trichrome staining for collagen deposition in hypoxic and normoxic groups. Photomicrographs were captured using an Olympus AX80 microscope equipped with a Qimaging QiCam digital camera (Qimaging). Original magnifications, 2×/0.13 NA dry objective (top), 20×/0.7 NA dry objective (middle and bottom). Arrow indicates bone area. Bar = 100 μm. Chih-Chien Tsai et al. Blood 2011;117:459-469 ©2011 by American Society of Hematology