Introduction to Probability Distributions

Slides:



Advertisements
Similar presentations
Special Discrete Distributions
Advertisements

Acknowledgement: Thanks to Professor Pagano
Introduction to Probability Distributions
Normal Approximation of the Binomial Distribution.
ฟังก์ชั่นการแจกแจงความน่าจะเป็น แบบไม่ต่อเนื่อง Discrete Probability Distributions.
Introduction to Probability Distributions. Random Variable A random variable X takes on a defined set of values with different probabilities. For example,
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics.
CHAPTER 13: Binomial Distributions
Chapter 4 Discrete Random Variables and Probability Distributions
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics.
Chapter 5 Probability Distributions
Chapter 5 Discrete Random Variables and Probability Distributions
Probability Distribution
RANDOM VARIABLES.
Expected value and variance; binomial distribution June 24, 2004.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 4 and 5 Probability and Discrete Random Variables.
Binomial Distributions Calculating the Probability of Success.
Day 2 Review Chapters 5 – 7 Probability, Random Variables, Sampling Distributions.
Biostat. 200 Review slides Week 1-3. Recap: Probability.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted by.
CHAPTER Discrete Models  G eneral distributions  C lassical: Binomial, Poisson, etc Continuous Models  G eneral distributions 
Introduction to Probability and Probability Distributions.
Statistics in Medicine Unit 4: Overview/Teasers. Overview Probability distributions; expected value and variance; the binomial and normal distributions.
1 Since everything is a reflection of our minds, everything can be changed by our minds.
Binomial Distributions IB Math SL1 - Santowski. The Binomial Setting F ixed number of n trials I ndependence T wo possible outcomes: success or failure.
Chapter 3 Discrete Random Variables and Probability Distributions  Random Variables.2 - Probability Distributions for Discrete Random Variables.3.
The Binomial Distribution.  If a coin is tossed 4 times the possibilities of combinations are  HHHH  HHHT, HHTH, HTHH, THHHH  HHTT,HTHT, HTTH, THHT,
Chapter 16 Week 6, Monday. Random Variables “A numeric value that is based on the outcome of a random event” Example 1: Let the random variable X be defined.
Examples of discrete probability distributions:
Lecture-6 Models for Data 1. Discrete Variables Engr. Dr. Attaullah Shah.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Business Statistics,
Probability and Statistics for Biomedical Engineering ( 의료통계학 ) 확률변수 Probability Distribution Probability & Statistics for Biomedical Engineering (2015.
Chapter 23C: Expected Values of Discrete Random Variables The mean, or expected value, of a discrete random variable is 1.
Probability Distributions  A variable (A, B, x, y, etc.) can take any of a specified set of values.  When the value of a variable is the outcome of a.
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
Chapter 4: Discrete Random Variables
Introduction to Probability Distributions
Chapter 4: Discrete Random Variables
Random Variables/ Probability Models
Probability Distributions; Expected Value
Virtual University of Pakistan
Chapter 5 Sampling Distributions
Chapter 5 Sampling Distributions
Chapter 5 Sampling Distributions
KIỂM ĐỊNH GIẢ THUYẾT THỐNG KÊ
TẠI SAO PHẢI NGHIÊN CỨU MÔ HÌNH HỒI QUY ĐA BIẾN?
Chapter 3 Discrete Random Variables and Probability Distributions
CHAPTER 6 Random Variables
Introduction to Probability and Statistics
Binomial distribution
Discrete random variable X Examples: shoe size, dosage (mg), # cells,…
Econometric Models The most basic econometric model consists of a relationship between two variables which is disturbed by a random error. We need to use.
Chapter 5 Sampling Distributions
Examples of discrete probability distributions:
Giảng viên: Lương Tuấn Anh
STATISTICAL MODELS.
Random Variables Binomial Distributions
Probability Theory and Specific Distributions (Moore Ch5 and Guan Ch6)
Chapter 6: Random Variables
Chapter 5 Sampling Distributions
Ch. 6. Binomial Theory.
CHAPTER 6 Random Variables
Introduction to Probability and Statistics
6: Binomial Probability Distributions
12/12/ A Binomial Random Variables.
Chapter 8: Binomial and Geometric Distributions
Applied Statistical and Optimization Models
Presentation transcript:

Introduction to Probability Distributions Phân bố xác suất Introduction to Probability Distributions

Hàm xác suất Một hàm xác suất xác định các giá trị x có khả năng xảy ra, p (x) P (x) là một số từ 0 đến 1.0. Diện tích dưới một hàm xác suất luôn là 1. It turns out that if you were to go out and sample many, many times, most sample statistics that you could calculate would follow a normal distribution. What are the 2 parameters (from last time) that define any normal distribution? Remember that a normal curve is characterized by two parameters, a mean and a variability (SD) What do you think the mean value of a sample statistic would be? The standard deviation? Remember standard deviation is natural variability of the population Standard error can be standard error of the mean or standard error of the odds ratio or standard error of the difference of 2 means, etc. The standard error of any sample statistic.

Ví dụ biến rời rạc: deo xúc xác p(x) 1/6 1 4 5 6 2 3

Hàm mật độ xác suất(pmf) p(x) 1 p(x=1)=1/6 2 p(x=2)=1/6 3 p(x=3)=1/6 4 p(x=4)=1/6 5 p(x=5)=1/6 6 p(x=6)=1/6 1.0

Hàm phân phối tích lũy(CDF) x P(x) 1/6 1 4 5 6 2 3 1/3 1/2 2/3 5/6 1.0

Hàm phân phối tích lũy x P(x≤A) 1 P(x≤1)=1/6 2 P(x≤2)=2/6 3 P(x≤3)=3/6 4 P(x≤4)=4/6 5 P(x≤5)=5/6 6 P(x≤6)=6/6

Ví dụ: Tìm xác suất rằng trong một giờ nhất định: Số bệnh nhân đến phòng khám trong trong thời điểm nhất định nào đó là một biến ngẫu nhiên được biểu diễn bởi x. Sự phân bố xác suất cho x là: x 10 11 12 13 14 P(x) .4 .2 .1 Tìm xác suất rằng trong một giờ nhất định: A. Chính xác 14 bệnh nhân đến B. Ít nhất 12 bệnh nhân đến C. Có nhiều nhất 11 bệnh nhân đến  p(x=14)= .1 p(x12)= (.2 + .1 +.1) = .4 p(x≤11)= (.4 +.2) = .6

Bài tập 1 Nếu bạn tung 1 con xúc xác, xác suất để xuất hiện mặt không lớn hơn 3 là: 1/6 1/3 1/2 5/6 1.0

Bài tập 1 Nếu bạn tung 1 con xúc xác, xác suất để xuất hiện mặt không lớn hơn 3 là: 1/6 1/3 1/2 5/6 1.0

Trường hợp liên tục Hàm xác suất tương ứng một biến ngẫu nhiên liên tục là một hàm toán học liên tục có tích phân bằng 1. Ví dụ, nhớ lại hàm mũ âm (trong xác suất, điều này được gọi là "phân phối mũ"): Tích phân hàm này bằng 1:

Hàm mật độ xác suất (pdf) p(x)=e-x 1 Xác suất x là bất kỳ giá trị cụ thể chính xác nào (như 1,9976) là 0; Chúng ta chỉ có thể chỉ định xác suất với các tập xác định của x.

Ví dụ: Xác suất để x rơi vào khoảng [1, 2]. p(x)=e-x 1 2

Vd 2: phân bố đều Phân bố đều, mọi biến có cùng xác suất. f(x)= 1 , for 1 x 0 x p(x) 1 Nó là một phân bố xác suất vì diện tích vùng dưới đường cong là 1: 

Vd 2: phân bố đều Xác suất để x nằm giữa 0 và ½? P(½ x 0)= ½ p(x) 1 P(½ x 0)= ½

Kỳ vọng và phương sai Tất cả các phân bố xác suất được đặc trưng bởi một giá trị kỳ vọng(trung bình) và một phương sai (độ lệch chuẩn bình phương).

Kỳ vọng Discrete case: Continuous case:

Ký hiệu E(X) = µ these symbols are used interchangeably

Ví dụ Phân bố xác suất bệnh nhân đến khám bệnh: x 10 11 12 13 14 P(x) .4 .2 .1

Trung bình mẫu Trung bình mẫu gồm n phần tử = Xác suất mỗi phần tử là 1/n

Phương sai/ độ lệch chuẩn 2=Var(x) =E(x-)2 “The expected (or average) squared distance (or deviation) from the mean”

Phương sai liên tục Discrete case: Continuous case?:

Symbol Interlude Var(X)= 2 SD(X) =  these symbols are used interchangeably

Similarity to empirical variance The variance of a sample: s2 = Division by n-1 reflects the fact that we have lost a “degree of freedom” (piece of information) because we had to estimate the sample mean before we could estimate the sample variance.

Variance Now you examine your personal risk tolerance…

Practice Problem On the roulette wheel, X=1 with probability 18/38 and X= -1 with probability 20/38. We already calculated the mean to be = -$.053. What’s the variance of X?

Answer Standard deviation is $.99. Interpretation: On average, you’re either 1 dollar above or 1 dollar below the mean, which is just under zero. Makes sense!

Bài tập 3 Tính kỳ vọng, phương sai của gieo đồng xu (H=1, T=0) là? .50, .50 .50, .25 .25, .50 .25, .25

Bài tập 3 Kỳ vọng, phương sai của gieo đồng xu (H=1, T=0) là? .50, .50 .50, .25 .25, .50 .25, .25

Phân phối nhị thức

Phân phối nhị thức A fixed number of observations (trials), n e.g., 15 tosses of a coin; 20 patients; 1000 people surveyed A binary outcome e.g., head or tail in each toss of a coin; disease or no disease Generally called “success” and “failure” Probability of success is p, probability of failure is 1 – p Constant probability for each observation e.g., Probability of getting a tail is the same each time we toss the coin

Phân phối nhị thức Take the example of 5 coin tosses. What’s the probability that you flip exactly 3 heads in 5 coin tosses?

Phân phối nhị thức Solution: One way to get exactly 3 heads: HHHTT What’s the probability of this exact arrangement? P(heads)xP(heads) xP(heads)xP(tails)xP(tails) =(1/2)3 x (1/2)2 Another way to get exactly 3 heads: THHHT Probability of this exact outcome = (1/2)1 x (1/2)3 x (1/2)1 = (1/2)3 x (1/2)2

Phân phối nhị thức In fact, (1/2)3 x (1/2)2 is the probability of each unique outcome that has exactly 3 heads and 2 tails. So, the overall probability of 3 heads and 2 tails is: (1/2)3 x (1/2)2 + (1/2)3 x (1/2)2 + (1/2)3 x (1/2)2 + ….. for as many unique arrangements as there are—but how many are there??

Factorial review: n! = n(n-1)(n-2)… Outcome Probability THHHT (1/2)3 x (1/2)2 HHHTT (1/2)3 x (1/2)2 TTHHH (1/2)3 x (1/2)2 HTTHH (1/2)3 x (1/2)2 HHTTH (1/2)3 x (1/2)2 HTHHT (1/2)3 x (1/2)2 THTHH (1/2)3 x (1/2)2 HTHTH (1/2)3 x (1/2)2 HHTHT (1/2)3 x (1/2)2 THHTH (1/2)3 x (1/2)2 10 arrangements x (1/2)3 x (1/2)2   The probability of each unique outcome (note: they are all equal)   ways to arrange 3 heads in 5 trials 5C3 = 5!/3!2! = 10 Factorial review: n! = n(n-1)(n-2)…

P(3 heads and 2 tails) = x P(heads)3 x P(tails)2 =  

Hàm phân phối nhị thức X= the number of heads tossed in 5 coin tosses p(x) p(x) x 1 2 3 4 5 number of heads number of heads

Hàm phân phối nhị thức Note the general pattern emerging  if you have only two possible outcomes (call them 1/0 or yes/no or success/failure) in n independent trials, then the probability of exactly X “successes”= n = number of trials 1-p = probability of failure p = probability of success X = # successes out of n trials

Phân phối nhị thức If I toss a coin 20 times, what’s the probability of getting exactly 10 heads?

Phân phối nhị thức If I toss a coin 20 times, what’s the probability of getting of getting 2 or fewer heads?

**Các phân bố xác suất được đặc trưng bởi kỳ vọng và phương sai: If X follows a binomial distribution with parameters n and p: X ~ Bin (n, p) Then: E(X) = np Var (X) = np(1-p) SD (X)= Note: the variance will always lie between 0*N-.25 *N p(1-p) reaches maximum at p=.5 P(1-p)=.25