Far-Field Optical Nanoscopy

Slides:



Advertisements
Similar presentations
Fluorophores bound to the specimen surface and those in the surrounding medium exist in an equilibrium state. When these molecules are excited and detected.
Advertisements

Three-Dimensional Super-Resolution Imaging by Stochastic Optical
Super-Resolution Fluorescence Microscopy
“Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins” M. Hoffmann, C. Eggeling,S.
Sub-diffraction-limit imaging by Stochastic Optical Reconstruction Microscopy (STORM) Michael J. Rust, Mark Bates, Xiaowei Zhuang Harvard University Published.
The Maryland Optics Group Far-Field Optical Microscope with Nanometer-Scale Resolution Igor I. Smolyaninov and Christopher C. Davis Department of Electrical.
Review of FIONA/PALM/STORM How to make photoactivatable fluorophores How to get 3-D Measurements Intro to STED (?)
Study of Protein Association by Fluorescence-based Methods Kristin Michalski UWM RET Intern In association with Professor Vali Raicu.
PALM/STORM How to get super-resolution microscopy.
Quiz 10/04/14 1. Recently, it has been possible to increase the accuracy of locating a single fluorophore (see diagram). What factors are critical to how.
Super-resolution-nanoscopy Resolvable volumes obtained with current commercial super-resolution microscopes. Schermelleh L et al. JCB 2010;190:
Total Internal reflection Fluorescence Microscopy: Instrumentation and Applications in Cell biology.
Integral University EC-024 Digital Image Processing.
: Chapter 11: Three Dimensional Image Processing 1 Montri Karnjanadecha ac.th/~montri Image.
Molecular Cell Biology Light Microscopy in Cell Biology Cooper Modified from a 2010 lecture by Richard McIntosh, University of Colorado.
Today’s Announcements
Presented by: Ziah Dean Date: November 30, 2010 Course: EE 230.
Date of download: 6/27/2016 Copyright © 2016 SPIE. All rights reserved. Characterization of reversibly switchable photo-imprint microscopy (rsPIM). (a)
Date of download: 7/5/2016 Copyright © 2016 SPIE. All rights reserved. Spatial light modulator-two-photon microscope (SLM-2PM) scheme: (1) Ti:Sa laser.
Date of download: 7/8/2016 Copyright © 2016 SPIE. All rights reserved. Through-the-objective TIRF creates the evanescent field on the aqueous side of the.
Presentation on.  There are many methods for measuring of fiber structure. Such as:  The absorption of infrared radiation  Raman scattering of light.
New Imaging Modalities of Optical Microscopy
Fig. 1 Methods of light-sheet microscopy
: Chapter 11: Three Dimensional Image Processing
Volume 94, Issue 1, Pages (January 2008)
Actin Protofilament Orientation at the Erythrocyte Membrane
Volume 91, Issue 8, Pages (October 2006)
Measurement of Single Macromolecule Orientation by Total Internal Reflection Fluorescence Polarization Microscopy  Joseph N. Forkey, Margot E. Quinlan,
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Volume 91, Issue 1, Pages 1-13 (July 2006)
Volume 94, Issue 12, Pages (June 2008)
Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells
Announcements Midterm out today Project 1 demos.
Imaging Structural Proteins
Volume 95, Issue 1, Pages (July 2008)
Evanescent Excitation and Emission in Fluorescence Microscopy
Statistical Deconvolution for Superresolution Fluorescence Microscopy
Imaging Intracellular Fluorescent Proteins at Nanometer Resolution
Nicolai T. Urban, Katrin I. Willig, Stefan W. Hell, U. Valentin Nägerl 
Quantification of Membrane Protein Dynamics and Interactions in Plant Cells by Fluorescence Correlation Spectroscopy  Xiaojuan Li, Jingjing Xing, Zongbo.
Dynamics of interphase microtubules in Schizosaccharomyces pombe
Volume 108, Issue 12, Pages (June 2015)
Volume 99, Issue 8, Pages (October 2010)
Volume 110, Issue 4, Pages (February 2016)
Eliminating Unwanted Far-Field Excitation in Objective-Type TIRF
Nanoscopy of Living Brain Slices with Low Light Levels
Aleš Benda, Yuanqing Ma, Katharina Gaus  Biophysical Journal 
Multiphoton Excitation Provides Optical Sections from Deeper within Scattering Specimens than Confocal Imaging  Victoria E. Centonze, John G. White  Biophysical.
Volume 112, Issue 8, Pages (April 2017)
Volume 5, Issue 3, Pages (May 2012)
Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two- Photon Laser Scanning Microscopy  Jun B. Ding, Kevin T. Takasaki, Bernardo.
Volume 101, Issue 7, Pages (October 2011)
Direct Observation of Single MuB Polymers
Volume 93, Issue 9, Pages (November 2007)
Naoto Yagi, Hiroyuki Iwamoto, Jun’ichi Wakayama, Katsuaki Inoue 
3D Protein Dynamics in the Cell Nucleus
Volume 101, Issue 10, Pages (November 2011)
Super-resolution Microscopy Approaches for Live Cell Imaging
Samuel T. Hess, Thanu P.K. Girirajan, Michael D. Mason 
Volume 111, Issue 4, Pages (August 2016)
Volume 98, Issue 1, Pages (January 2010)
Announcements Midterm out today Project 1 demos.
Imaging techniques for next generation plant cell biology.
Polarized Fluorescence Resonance Energy Transfer Microscopy
Volume 2, Issue 5, Pages (November 2012)
Volume 106, Issue 5, Pages (March 2014)
Volume 115, Issue 12, Pages (December 2018)
Fluorescence microscopy with super-resolved optical sections
by Alan She, Shuyan Zhang, Samuel Shian, David R
Naoto Yagi, Hiroyuki Iwamoto, Jun’ichi Wakayama, Katsuaki Inoue 
Presentation transcript:

Far-Field Optical Nanoscopy by Stefan W. Hell Science Volume 316(5828):1153-1158 May 25, 2007 Published by AAAS

Fig. 1. Fluorescence nanoscopy schemes: single-point scanning (upper row) and parallelized versions (lower row). Fluorescence nanoscopy schemes: single-point scanning (upper row) and parallelized versions (lower row). (A) Confocal microscopy. The excitation light wave (blue) formed by the lens to a spherical cap produces a 3D diffraction spot, generating fluorescence in the focal region. A pointlike detector (not shown) registers fluorescence mostly from the main maximum (shown in green), thus providing a slightly improved resolution over regular epifluorescence microscopy. Nevertheless, the confocal microscopy resolution is limited by diffraction to >200 nm in the focal plane (x, y) and to >450 nm along the optical (z) axis. (B) By combining the wavefront caps of two opposing lenses, 4Pi microscopy produces a narrower spot along the z axis and hence an improved z resolution of 80 to 150 nm. (C) A typical single-point scanning STED microscope uses a regularly focused excitation beam (blue) that is superimposed by a doughnut-shaped STED beam (orange) that instantly quenches excited molecules at the periphery of the excitation spot, thus confining fluorescence emission to the doughnut zero. Saturated quenching results in a fluorescent spot far below diffraction (green), here 20 nm, whose scanning across the sample yields a subdiffraction-resolution image. The spots represent measured data. (D) RESOLFT principle: A focal intensity distribution I(r) featuring zeros that are > λ/2n apart confines either the bright state A (left) or the dark state B (right) through a saturable or switching transition, corresponding to a parallelized STED, GSD, or photoswitching approach (on the left) and to the SPEM concept (on the right). In both cases, imaging onto a camera causes the subdiffraction features created by the bright state A (left) or the dark state B (right) at the sample to be blurred on the camera by diffraction. Left: The blur can be dealt with by summing up each diffraction blob individually and allocating the signal to the pertinent coordinate of the zero in the sample space. The image is gained by translating the zeros across the sample and reading out the fluorescence for each coordinate step. (Right) The same holds for SPEM in which the superresolved data are encoded in the narrow regions around the zeros in which the dark state B is deliberately established (“negative data set”). The image is obtained by mathematically converting the negative data set into a positive one. Both strategies rely on a targeted signal readout based on preset positions of the zeros, and both operate with fluorophore ensembles; pA(r) ≤ 1 defines the normalized probability of occurrence of A. Small boxes symbolize molecules making up the object (gray-shaded mountains). (E) PALM and STORM readout the fluorophore molecules stochastically; the molecules must be switchable. Weak illumination sparsely switches individual fluorophores to the bright state A so that they are further apart than λ/2n. Detection of N ≫ 1 photons enables the centroid calculation of the diffraction blob of individual fluorophores on the camera, and hence assembling an image with resolution depending on N. Concepts (C) to (E) are not diffraction-limited, meaning that they can resolve similar molecules at nanometer distances. The STED, PALM, SPEM, and RESOLFT recording process is sketched in movies S1 to S4. Stefan W. Hell Science 2007;316:1153-1158 Published by AAAS

Fig. 2. Targeted versus stochastic time-sequential readout of fluorophore markers of a nanostructured object within the diffraction zone whose lower bound is given by λ/2n. Targeted versus stochastic time-sequential readout of fluorophore markers of a nanostructured object within the diffraction zone whose lower bound is given by λ/2n. A and B denote a bright and a dark state, respectively. In the targeted readout mode, one of the two states (here A) is established at a subdiffraction-sized spot at the position of a zero to read out an unknown number of fluorophore molecules. The image is assembled by deliberate translation of the zero. The zero can also be a groove. In the stochastic readout mode, a single switchable fluorophore from a random position within the diffraction zone is switched to a stable state A, while the other molecules remain in B. The coordinate is calculated from the centroid of the diffraction fluorescence spot measured by a pixelated detector. The coordinate pops up stochastically depending on where the interrogated marker molecule is located. Stefan W. Hell Science 2007;316:1153-1158 Published by AAAS

Fig. 3. Bright (A) and dark (B) molecular states used to break the diffraction barrier. Bright (A) and dark (B) molecular states used to break the diffraction barrier. Whereas STED, GSD, and SPEM utilize photophysical transitions, the photoswitching version of the RESOLFT scheme, as well as PALM and STORM, exploit photochemical transitions in which atoms are relocated or bonds formed and broken. PALM and STORM rely on measuring single (or at least identifiable) molecules at a time, whereas the other concepts, although compatible with single-molecule imaging, principally read out ensembles. Ensemble techniques rely on reversible transitions between A and B, as indicated by the rates k. The probability pA of being in state A depends nonlinearly on the light intensity applied, as indicated by the equations, ensuring that either A or B is confined to a subdiffraction area at a targeted coordinate in space. The e–γI and the (1 + γI)–1 dependence entail nonlinearities of infinite order (γI)m; m→∞. By increasing the lifetime of the chosen states, γ strengthens the nonlinear dependence of pA, thus enabling huge nonlinearities at low I. This is radically different from m-photon processes that, depending on the concomitant action of m photons and hence just on Im, are firmly limited to order m (15), which in practice is only m < 4. Because it operates with single molecules in a known state, the probability concept breaks down in PALM and STORM, but reminiscent of nonlinearity is the optical switching. Stefan W. Hell Science 2007;316:1153-1158 Published by AAAS

Fig. 4. Side-by-side comparisons. Side-by-side comparisons. (A) Confocal versus 4Pi axial (xz) image of microtubules in a neuron: 4Pi image displays 140-nm z resolution; lens of α = 74° and with two-photon excitation at 800 nm. The plain 4Pi image is due to a narrow solitary peak without lobes; mathematical lobe-removal is not required. (B) Unlike the confocal reference, the STED image reveals the spatial order of self-assembled fused silica nanobeads containing a fluorescence core (45). (C) Neurofilaments in human neuroblastoma recorded in the confocal mode (left) and with STED after nonlinear deconvolution (right) displaying a focal plane resolution of 20 to 30 nm (39). (D) Epifluorescence versus PALM recording of a cryoprepared section from a mammalian cell expressing a lysosomal transmembrane protein tagged with a photoswitchable protein; both images were recorded with a TIRF setup. PALM resolution ranges between 20 and 60 nm, whereas individual protein localizations can be 2 nm (12). Stefan W. Hell Science 2007;316:1153-1158 Published by AAAS