Warmup What is the height? What proportion of data is more than 5?

Slides:



Advertisements
Similar presentations
Chapter 2: Modeling Distributions of Data
Advertisements

Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
The Rule Normal Distributions.
Chapter 2: The Normal Distribution
+ Chapter 2: Modeling Distributions of Data Section 2.2 Normal Distributions The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE.
Using the Empirical Rule. Normal Distributions These are special density curves. They have the same overall shape  Symmetric  Single-Peaked  Bell-Shaped.
Normal Distributions and the Empirical Rule Learning Target: I can use percentiles and the Empirical rule to determine relative standing of data on the.
+ Chapter 2: Modeling Distributions of Data Section 2.2 Normal Distributions The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE.
+ Warm Up The graph below shows cumulative proportions plotted against GPA for a large public high school. What is the median GPA? a) 0.8b) 2.0c) 2.4d)
+ Chapter 2: Modeling Distributions of Data Section 2.1 Describing Location in a Distribution The Practice of Statistics, 4 th edition - For AP* STARNES,
Section 2.2 Normal Distributions Mrs. Daniel AP Statistics.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 2 Modeling Distributions of Data 2.2 Density.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 2 Modeling Distributions of Data 2.2 Density.
+ Chapter 2: Modeling Distributions of Data Section 2.2 Normal Distributions The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE.
+ Chapter 2: Modeling Distributions of Data Lesson 2: Normal Distributions.
+ Chapter 2: Modeling Distributions of Data Section 2.2 Normal Distributions The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE.
Density Curves & Normal Distributions Textbook Section 2.2.
Normal Distributions. Homework Answers 1. a) Her percentile is.25, or the 25 th percentile. 25% of girls have fewer pairs of shoes b) His.
2.2 Normal Distributions
Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Entry Task Chapter 2: Describing Location in a Distribution
CHAPTER 2 Modeling Distributions of Data
Good Afternoon! Agenda: Knight’s Charge-please wait for direction
Statistics Objectives: The students will be able to … 1. Identify and define a Normal Curve by its mean and standard deviation. 2. Use the 68 – 95 – 99.7.
CHAPTER 3: The Normal Distributions
Chapter 2: Modeling Distributions of Data
Density Curves and Normal Distribution
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Using the Empirical Rule
2.2A Introduction to Normal Distributions
12/1/2018 Normal Distributions
Chapter 2: Modeling Distributions of Data
Normal Distributions, Empirical Rule and Standard Normal Distribution
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 3 Modeling Distributions of Data
Chapter 3: Modeling Distributions of Data
CHAPTER 3: The Normal Distributions
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 3: The Normal Distributions
Mean and Median.
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Presentation transcript:

Warmup What is the height? What proportion of data is more than 5? 1. What is the height? What proportion of data is more than 5? What proportion of data is between 6 and 9? 2. A distribution has a median of 25 and an IQR of 9. a) What is the adjusted median and IQR if I decrease every value by 5? b) What is the adjusted median and IQR if I multiply every value by 2.5?

Section 2.2 Normal Distributions Learning Objectives After this section, you should be able to… DESCRIBE and APPLY the 68-95-99.7 Rule DESCRIBE the standard Normal Distribution PERFORM Normal distribution calculations ASSESS Normality

Normal Distributions Normal Distributions One particularly important class of density curves are the Normal curves, which describe Normal distributions. All Normal curves are symmetric, single-peaked, and bell- shaped A Specific Normal curve is described by giving its mean µ and standard deviation σ. Normal Distributions Two Normal curves, showing the mean µ and standard deviation σ.

Normal Distributions Normal Distributions Definition: A Normal distribution is described by a Normal density curve. Any particular Normal distribution is completely specified by two numbers: its mean µ and standard deviation σ. The mean of a Normal distribution is the center of the symmetric Normal curve. The standard deviation is the distance from the center to the change-of-curvature points on either side. We abbreviate the Normal distribution with mean µ and standard deviation σ as N(µ,σ). Normal distributions are good descriptions for some distributions of real data. Normal distributions are good approximations of the results of many kinds of chance outcomes. Many statistical inference procedures are based on Normal distributions.

Normal Distributions The 68-95-99.7 Rule Although there are many Normal curves, they all have properties in common. Normal Distributions Definition: The 68-95-99.7 Rule (“The Empirical Rule”) In the Normal distribution with mean µ and standard deviation σ: Approximately 68% of the observations fall within σ of µ. Approximately 95% of the observations fall within 2σ of µ. Approximately 99.7% of the observations fall within 3σ of µ.

The distribution of Iowa Test of Basic Skills (ITBS) vocabulary scores for 7th grade students in Gary, Indiana, is close to Normal. Suppose the distribution is N(6.84, 1.55). Sketch the Normal density curve for this distribution. What percent of ITBS vocabulary scores are less than 3.74? What percent of the scores are between 5.29 and 9.94? Example 1 Normal Distributions

The distribution of the heights of adult females is N(64.5, 2.5). Sketch the Normal density curve for this distribution. What percent of females are taller than 67 inches? What percent of females are between 59.5 inches and 64.5 inches? Example 2 Normal Distributions

The Standard Normal Distribution All Normal distributions are the same if we measure in units of size σ from the mean µ as center. Normal Distributions Definition: The standard Normal distribution is the Normal distribution with mean 0 and standard deviation 1. If a variable x has any Normal distribution N(µ,σ) with mean µ and standard deviation σ, then the standardized variable has the standard Normal distribution, N(0,1).

The Standard Normal Table Normal Distributions Because all Normal distributions are the same when we standardize, we can find areas under any Normal curve from a single table. Definition: The Standard Normal Table Table A is a table of areas under the standard Normal curve. The table entry for each value z is the area under the curve to the left of z. Suppose we want to find the proportion of observations from the standard Normal distribution that are less than 0.81. We can use Table A: P(z < 0.81) = .7910 Z .00 .01 .02 0.7 .7580 .7611 .7642 0.8 .7881 .7910 .7939 0.9 .8159 .8186 .8212

Normal Distributions Finding Areas Under the Standard Normal Curve Example, p. 117 Normal Distributions Find the proportion of observations from the standard Normal distribution that are between -1.25 and 0.81.

Normal Distribution Calculations Normal Distributions When Tiger Woods hits his driver, the distance the ball travels can be described by N(304, 8). What percent of Tiger’s drives travel between 305 and 325 yards?