01SEP17.

Slides:



Advertisements
Similar presentations
Update of RTML, Status of FNAL L-band and CLIC X-band BPM, Split SC Quadrupole Nikolay Solyak Fermilab (On behalf of RTML team) LCWS2010 / ILC 10, March.
Advertisements

Christopher Gerth, Michael Röhrs, Holger Schlarb DESY Hamburg Optics for Diagnostic Section BC1 in the European XFEL.
1 Dejan Trbojevic EIC Collaboration Meeting, Hampton University, Virginia May 19, 2008 Dejan Trbojevic e-RHIC with non-scaling FFAG’s.
LTU & Electron Beam Dump Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Technical Design.
November 2005M. Woodley1 ILC Beam Delivery System layout with end-of-linac undulator.
DR km DTC Lattice 7 July 2011 D. Rubin. DTC01 layout 1.Circumference = m, 712m straights 2.~ 6 phase trombone cells 3.54 – 1.92m long wigglers.
PPS and BCS Requirements for LCLS-II (Baseline) Stan Mao 06/10/2015.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
ILC RTML Lattice Design A.Vivoli, N. Solyak, V. Kapin Fermilab.
Transfer Line -2 Optics Design For CTF3 Amalendu Sharma, Abdurrahim, A.D.Ghodke, Gurnam Singh and V.C. Sahni Raja Ramanna Centre for Advanced Technology.
October 31, BDS Group1 ILC Beam Delivery System “Hybrid” Layout 2006e Release Preliminary M. Woodley.
January 10, 2007M. Woodley (SLAC)1 ILC Beam Delivery System “Interim Working Assumption” 2006e Release European LC Workshop, January , Daresbury.
Design of an Isochronous FFAG Ring for Acceleration of Muons G.H. Rees RAL, UK.
ILC Beam Delivery System / MDI Issues for LCC-phase (~
Low Energy RHIC e - Cooling Meeting Minutes – 11/19/14 1. Cooling Section Magnets and Power Supplies –Most of power supplies will be from ERL (R. Lambiase).
Overview of Booster PIP II upgrades and plans C.Y. Tan for Proton Source group PIP II Collaboration Meeting 03 June 2014.
ILC Damping Ring Alternative Lattice Design ( Modified FODO ) ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics,
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
Mark Woodley, SLACATF2 Project March 20-21, Next version of MAD decks (v3.7): what needs to be added/deleted?
Beam Stay-Clear (BSC) Apertures in LCLS-II June 24, 2015 P. Emma Take up work Jim Welch started (LCLSII-TN-14-15, Jan. 23, 2015) Goal is to define stay-clear.
BDS Lattice Design : EDR plans GWP03 Meeting 04/12/2007.
Status of RTML design in TDR configuration A.Vivoli, N. Solyak, V. Kapin Fermilab.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
PRELIMINARY DESIGN OF NEW CONNECTION LINES: BSY TO A-LINE AND CU-LINAC TO SXR Y. Nosochkov April 1, 2015.
LCLS-II Optics Release: 26FEB16. What’s new in this release? new cathode-to-L0 (“GUNB”) layout ˃input Twiss from Feng Zhou’s 100 pC beam updated cryomodule.
CW Linac Lattice August, 29 N.Solyak, B.Shteynas.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Acceleration.
Design challenges for head-on scheme Deepa Angal-Kalinin Orsay, 19 th October 2006.
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Alex.
PS2 WG Injection and extraction systems Basics and assumptions
Arun Saini, N. Solyak Fermi National Accelerator Laboratory
Dispersion correction in the bypass dogleg
ILC-CR-0004 Main Linac extension: Implementation status
J-PARC main ring lattice An overview
Emittance Diagnostics
Sara Thorin, MAX IV Laboratory
LCLS2sc MAD files: Injector to Bypass Line
Test of Optical Stochastic Cooling in CESR
M. Boscolo, K. Bertsche, E. Paoloni, S. Bettoni,
Large Booster and Collider Ring
LCWS2015 : Beam Dynamics / M. Woodley
LCLS-II Lattice 26FEB16: updates in the areas from bypass to dump
Alternate Lattice for LCLS-II LTU Y
Beam-Based Feedback in LCLS-II
AD & I : BDS Lattice Design Changes
Update of CLIC accelerating structure design
ILC BDS Emittance Diagnostics: Design and Requirements
26AUG16.
Electron Source Configuration
Chromatic Corrections in LCLS-II P. Emma, Y. Nosochkov, M. Woodley Mar
Lattice update: downstream sections
PS2 Injection/Extraction Layout
Collider Ring Optics & Related Issues
LCLS-II β-Matching Study
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Y. Nosochkov and M. Woodley (SLAC)
Specifications for the XFEL Beam Switchyard Kickers
Proposal for quadrupole families
MEIC Shifting Magnet Tim Michalski August 6, 2015.
Vertical Dogleg Options for the Ion Collider Ring
Bunch Compressor Beam Line Optics
Transfer Line for EIC.
Ion Collider Ring Using Superferric Magnets
Alternative Ion Injector Design
Update on JLEIC Electron Ring Design
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
Presentation transcript:

01SEP17

15.5* MeV/m original LCLS-II baseline [04NOV16] 15.5* MeV/m present 0.25 GeV L2 1.6 GeV L3 4.0 GeV BC2 44.18 m original LCLS-II baseline [04NOV16] COL2 EXT 4 15 16 25 26 35 DB1 15+2 DB2 20 BRB1 (to NIT) 15.5* MeV/m 0.25 GeV L2 1.6 GeV L3 4.0 GeV BC2 present LCLS-II baseline [09MAY17] 284.86 m EMIT2 4 15 16 25 26 35 21 m BRB1 (to NIT) DB1 15+2 DB2 20 NOTE: not to scale 18* MeV/m 20.8* MeV/m 0.25 GeV L2 (φ=-21°) 1.873 GeV L3 (φ=5°) 3.749 GeV L4 (φ=3.8°) 8.0 GeV BC2 40.95 m LCLS-II-HE [next] EMIT2 4 15 16 25 26 28 29 35 41 42 55 12.4 m BRB1 (to NIT) DB1 15+2 DB2 14 DB3 26 accelerating gradients: 18.0 MeV/m includes 3% overhead 20.8 MeV/m includes 6% overhead

BC2 L2 DOG EMIT2 L3 LEX L4 EXT 30° / cell FODO low-energy extraction

NOTE: kickers, septum, and final bend rotated ~50° counter-clockwise

2nd order dispersion correction match to SIT bypass line rotated sextupoles -28° -1° -17° match to SIT bypass line

“Stripline-15” (new type) SLTR QF1545 (a.k.a. QF-1) “1.013Q3.42” SA-446-538-71 bore = 1.013” chamber φ = 0.9” (22.9 mm) core length = 3.42” full core width = 6.5” GLmax = 63.8 kG @ 160 A BPM “Stripline-15” (new type) SA-446-563-30 strip φ = 1.057” (26.9 mm)

septum kickers CM29 L3 L4 CM29 kickers septum

name area type Bmax Egev B % Esgev Bs % ------- ----- ------------ ------ ----- --------- --- ----- --------- --- BKRL3X1 LEDOG 0.787K35.4 0.040 3.749 0.035750 89 4.000 0.038144 95 BKRL3X2 LEDOG 0.787K35.4 0.040 3.749 0.035750 89 4.000 0.038144 95 BKRL3X3 LEDOG 0.787K35.4 0.040 3.749 0.035750 89 4.000 0.038144 95 BKRL3XD LEDOG 1.378K35.4 0.023 3.749 0.020429 89 4.000 0.021796 95 BLRL3X LEDOG 0.625SD38.98 11.000 3.749 10.309746 94 4.000 10.999996 100 BRL3X LEDOG 1.0D38.37 11.000 3.749 10.310544 94 4.000 11.000847 100 name area type GLmax Egev GL % Esgev GLs % QL3X1 LEDOG 1.013Q3.42 63.80 3.749 -57.4057 90 4.000 -61.2490 96 QL3X2 LEDOG 1.013Q3.42 63.80 3.749 57.4057 90 4.000 61.2490 96 QL3X3 LEDOG 1.26Q12 150.00 3.749 -64.5145 43 4.000 -68.8338 46 QL3X4 LEDOG 1.26Q12 150.00 3.749 85.8842 57 4.000 91.6343 61 QL3X5 LEDOG 1.26Q12 150.00 3.749 -63.5880 42 4.000 -67.8453 45 QL3X6 LEDOG 1.26Q12 150.00 3.749 76.5282 51 4.000 81.6519 54 QL3X7 LEDOG 1.26Q12 150.00 3.749 -98.2350 65 4.000 -104.8120 70 QL3X8 LEDOG 1.26Q12 150.00 3.749 100.6448 67 4.000 107.3830 72 name area type G’Lmax Egev G’L % Esgev G’Ls % SL3X1 LEDOG 1.38S3.00 870.00 3.749 510.7907 59 4.000 544.9888 63 SL3X2 LEDOG 1.38S3.00 870.00 3.749 540.7345 62 4.000 576.9374 66 SL3X3 LEDOG 1.38S3.00 870.00 3.749 675.8124 78 4.000 721.0588 83

E= 3.749 GeV, γε= 1 μ, σWS= 250 μ E= 3.749 GeV, γε= 1 μ, σCOLL= 300 μ 45° / cell FODO E= 3.749 GeV, γε= 1 μ, σWS= 250 μ 45° / cell FODO E= 3.749 GeV, γε= 1 μ, σCOLL= 300 μ WS WS WS WS CX CY CX CY

DC merge bend

X Z A-line BSY wooden door SXR DASEL new low-energy dump line LCLS Cu linac scH NIT SIT scS HXR scSX new B-line connector Z

Y Z scH scS new low-energy dump line NIT SIT scSX merge A-line cuS scD LCLS Cu linac NIT SIT DASEL A-line scH scS cuS new low-energy dump line new B-line connector Y Z scSX merge scD scH

NOTE: kickers, septum, and final bend rotated ~2° counter-clockwise

Changes (w.r.t. 04JUL17) L3/L4 split moves 1 cryomodule upstream L3: CM16-CM25(10) / vacuum break / CM26-CM28(3) L4: CM29-CM41(13) / vacuum break / CM42-CM55(14) energy profile (see slide 2) updated gradients, phases, overheads BC2 energy now 1.873 GeV LEX energy now 3.749 GeV (max 4 GeV) low-energy extraction now includes one “DIAG0-style” kicker (25 mm ID pipe) low-energy dogleg now uses 2 “1.013Q3.42” quadrupoles with 2 “Stripline-15” BPMs 6 “1.26Q12” quadrupoles with 6 “Stripline-6” BPMs numbered of powered spreader kickers for both HXR and SXR increased to 5, plus one “DIAG0-style” kicker (25 mm ID pipe) at the end of each string low-energy dump line now included possible future connector between BSY dump line and B-line tunnel included will not be released as part of baseline

Issues no dedicated differential pumping stay-clear spaces at end of L3 and beginning of L4 … pumps assumed to be interleaved with other devices in warm section (assumed particle-free) only one R56 compensation chicane associated with low-energy dogleg (at downstream end) dogleg R56 = -2.3 mm (maximum R56 in compensation chicane at 4 GeV is 0.943 mm) SXR safety dump bends (permanent magnets) at 8 GeV B-field of safety dump bends magically doubled in MAD deck to retain layout