a*(variable)2 + b*(variable) + c

Slides:



Advertisements
Similar presentations
a*(variable)2 + b*(variable) + c
Advertisements

Factoring Polynomials
6.3 Factoring Trinomials II Ax 2 + bx + c. Factoring Trinomials Review X 2 + 6x + 5 X 2 + 6x + 5 (x )(x ) (x )(x ) Find factors of 5 that add to 6: Find.
Basics A quadratic equation is an equation equivalent to an equation of the type ax2 + bx + c = 0, where a is nonzero We can solve a quadratic equation.
Factoring trinomials ax² + bx +c a = any number besides 1 and 0
X-box Factoring.
Solving Quadratic Equations Algebraically Lesson 2.2.
Bellringer part two Simplify (m – 4) 2. (5n + 3) 2.
+ Completing the Square. + In your notes: Simplify the following: (5 – 3i)(4 + 2i) 3.
Any questions on the Section 8.2 homework?
Factoring Polynomials
10.1 Adding and Subtracting Polynomials
Factoring Polynomials
Solving Quadratic Equations by Completing the Square.
9.1 Adding and Subtracting Polynomials
Factoring Polynomials
Factoring Polynomials. 1.Check for GCF 2.Find the GCF of all terms 3.Divide each term by GCF 4.The GCF out front 5.Remainder in parentheses Greatest Common.
Algebra 2: Module 4 Lesson 1
Chapter 8: Factoring.
Polynomials P4.
CHAPTER 8: FACTORING FACTOR (noun) –Any of two or more quantities which form a product when multiplied together. 12 can be rewritten as 3*4, where 3 and.
(2x) = (2x – 3)((2x)2 + (2x)(3) + (3)2) = (2x – 3)(4x2 + 6x + 9)
Copyright © 2015, 2011, 2007 Pearson Education, Inc. 1 1 Chapter 6 Factoring.
Solving Quadratic Equations. Review of Solving Quadratic Equations ax 2 +bx +c = 0 When the equation is equal to zero, solve by factoring if you can.
By Kendal Agbanlog 6.1-Measurement Formulas and Monomials 6.2-Multiplying and Dividing Monomials 6.3-Adding and Subtracting Polynomials 6.4-Multiplying.
REVIEW OF FACTORING Chapters 5.1 – 5.6. Factors Factors are numbers or variables that are multiplied in a multiplication problem. Factor an expression.
Warm Up Hint: GCF first.. Then SUM of CUBES Hint: Grouping Hint: Diff of squares.
Factoring trinomials ax² + bx +c a = any number besides 1 and 0.
Polynomials and Factoring!!! By Anastasia Stocker & Matthew Laredo Chapter 10:
Table of Contents Factors and GCF Factoring out GCF's Factoring 4 Term Polynomials Factoring Trinomials x2 + bx + c Factoring Using Special Patterns Factoring.
Polynomials Interpret the Structure of an Expression (MCC9-12.A.SSE.1a.b) Perform Arithmetic Operations on Polynomials (MCC9-12.A.APR.1)
Polynomial – a monomial or sum of monomials Can now have + or – but still no division by a variable. MonomialBinomialTrinomial 13x 13x – 4 6x 2 – 5x +
Copyright © 2011 Pearson Education, Inc. Factoring CHAPTER 6.1Greatest Common Factor and Factoring by Grouping 6.2Factoring Trinomials of the Form x 2.
Math 8H Algebra 1 Glencoe McGraw-Hill JoAnn Evans 8-4 Factoring Trinomials ax 2 + bx + c.
Factoring Trinomials.
X-box Factoring.
Quadratic Equations P.7.
Polynomials & Factoring
Factoring Polynomials
Polynomial Equations and Factoring
Factoring Quadratic Expressions Lesson 4-4 Part 2
Objectives Solve quadratic equations by factoring.
Section R.4 Factoring.
Objective The student will be able to:
Factoring Polynomials
Copyright © Cengage Learning. All rights reserved.
Day 139 – X-BOX Factoring.
Factoring polynomials
a*(variable)2 + b*(variable) + c
Polynomials and Polynomial Functions
QUADRATIC EQUATIONS MSJC ~ San Jacinto Campus
Factoring Special Cases
1B.1- Solving Quadratics:
Factoring & Special Cases--- Week 13 11/4
Factoring Trinomials.
a*(variable)2 + b*(variable) + c
4.3 Solving Quadratic Equations by Factoring
Section 9.2 Using the Square Root Property and Completing the Square to Find Solutions.
The Square Root Property and Completing the Square
Algebra 1 Section 10.3.
Day 139 – X-BOX Factoring.
The Greatest Common Factor
Today we will Finish chapter 5
Solving Quadratic Equations by Factoring
Factoring trinomials in form ax2 + bx + c
X-box Factoring.
Do Now 3/4/19 Take out your HW from last night.
There is a pattern for factoring trinomials of this form, when c
QUADRATIC EQUATIONS MSJC ~ San Jacinto Campus Math Center Workshop Series Janice Levasseur.
Presentation transcript:

a*(variable)2 + b*(variable) + c CH. 8.3 Factoring polynomials of the form: a*(variable)2 + b*(variable) + c Factor: 6x2 + 11x + 4 STEP 1: Is there a GCF of all terms? NO STEP 2: How many terms are there? 3 Is it of degree 2? YES * Is it in the form a*(variable)2 + b*(variable) + c? YES In this example a = 6, b=11, c = 4 The trick for these trinomials is to multiply a (the coefficient of x2) to c, the constant term, 4. ac = 6*4 = 24. Next, find a pair of factors of that number that add up to the middle term’s coefficient. Since 3 + 8 = 11, so let’s use those factors and rewrite the middle term, 11x, as 3x + 11x. 6x2 + 11x + 4 = 6x2 + 3x + 8x + 4 Now we have 4 terms, let’s factor by grouping. = 3x(2x + 1) + 4(2x + 1) common factor = (2x + 1)(3x + 4) Factors of 24 Sum of those Factors 1, 24 1+24 = 25 2, 12 2 + 12 = 14 3, 8 3 + 8 = 11 4,6 4 + 6 = 10

BOX METHOD 6x2 + 11x + 4 As before, find a pair of factors of 24 (since 6* 4 = 24) that add up to the middle term’s coefficient, 11. We already figured out that 3 * 8 = 24 and 3x + 8x = 11, so our factors to use are 3 and 8. First, make a box with the first term, 6x2 in the upper left corner and then last term term, 4 in the lower left corner. GCF’s: Then put in the factors multiplied by x in the other boxes (it doesn’t matter which ones). That is, we will put 3x and 8x in the other boxes. We then proceed to find the GCF of each row and each column of the box. If there is no common factor, just use 1. Now use these GCF’s for your factorization: 2x 1 3x 6x2 3x 4 8x 4 (3x + 4)(2x + 1) !!!

STEP 1: Is there a GCF of all 3 terms? NO Example 5 Factor: 8y2 – 10y - 3 STEP 1: Is there a GCF of all 3 terms? NO STEP 2: How many terms are there? 3 Is it of degree 2? YES * Is it in the form a*(variable)2 + b*(variable) + c? YES In this example, a = 8, b = -10, c = -3 ac = 8*-3 = -24 b = -10 What pair of factors of -24 will add up to -10? In the previous example we only had to look at each pair once since the last term ac was positive and the middle term, b, was also positive. Now in this example, a is positive (8) and c is negative (-3) so ac= -24, which is negative. The middle term’s coefficient, b, is -10. Factors of 24 Sum of those Factors -1, 24 -1+24 = 23 1, -24 1 + -24 = -23 2, -12 2 + -12 = -10 -2, 12 -2 + 12 = 10 -3, 8 -3 + 8 = 5 3, -8 3 + -8 = -5 4, -6 4 + -6 = -2 -4,6 -4 + 6 = 2 So we will split the middle term, -10y in to 2y + -12y

What was that polynomial again? 8y2 – 10y - 3 =8y2 + 2y + -12y - 3 BOX METHOD: GCF’s: 2y -3 Since both terms in the left column have a negative coefficient, factor out a negative number. 4y 8y2 -12y 1 2y -3 FACTORIZATION: (4y + 1)(2y - 3)

STEP 1: Is there a GCF of all 3 terms? YES. GCF=4y Example 7 Factor: 24x2y – 76xy + 40y STEP 1: Is there a GCF of all 3 terms? YES. GCF=4y Factor out 4y from the polynomial. 4y(6x2 - 19x + 10) STEP 2: How many terms are there? 3 Is it of degree 2? YES * Is it in the form a*(variable)2 + b*(variable) + c? YES In this example, a = 6, b = -19, c = 10 ac = 6*10 = 60 b = -19 Since b is negative and ac is positive, both factors of ac must be negative in order for the product to be positive and the sum to be negative. Factors of 24 Sum of those Factors -1, -60 -1 + -60 = -61 -2, -30 -2 + -30 = -32 -3, -20 -3 + -20 = -23 -4, -15 -4 + -15 = -19 -5, -12 -5 + -12 = -17 -6, -10 -6 + -10 = -16 So we will split the middle term, -19x in to -4x + -15x

COMPLETE FACTORIZATION: Let’s do the grouping method this time: 4y(6x2 - 19x + 10) Let’s just work inside the parentheses for now, but don’t forget that 4y at the end! Inside the parentheses: 6x2 + -4x + -15x + 10 = 2x(3x - 2) + -5(3x – 2) = (3x – 2)(2x – 5) COMPLETE FACTORIZATION: 4y(3x – 2)(2x – 5)

8.4 SPECIAL FACTORING Remember these? (a + b)2 = a2 + 2ab + b2 (a – b)2 = a2 – 2ab + b2 When you see a trinomial that starts and ends with a perfect square, it’s possible the factorization could be a square of a binomial. Example: Factor: 4x2 – 20x + 25 STEP 1: Is there a GCF of all the terms? NO STEP 2: How many terms are there? 3 Is it of degree 2? YES Are the first and last terms perfect squares? YES 4x2 can be rewritten as (2x)2, so it is a perfect square. 25 can be rewritten as 52, so it is a perfect square. The bases of those squares are 2x and 5. The middle term of a trinomial can be factored into the square of a binomial is 2*base of the first term * base of the second term. The middle term is -20x = -2(4x)(5). So this trinomial is the square of the DIFFERENCE OF THE BASES (since the middle term is negative). = (2x – 5)2 Check: (2x – 5)2=(2x – 5)(2x – 5)= = (2x)(2x)+ (-5)(2x) + -5(2x) + (-5)(-5) = 4x2 + -10x + -10x + 25 = 4x2 – 20x + 25

The Difference of Squares Recall this one: (a – b)(a + b) = a2 – ab + ab – b2 = a2 – b2 So going the other way, a2 – b2 can be factored into (a - b)(a + b) Example: Factor 25x2 – y2 STEP 1: Is there a GCF of all terms? NO STEP 2: How many terms are there? 2 Check if this is a difference of two squares. 25x2 = (5x)2 y2 = (y)2 SO…. 25x2 – y2 = (5x – y)(5x + y) CHECK: (5x – y)(5x + y) = 25x2 - 5xy + 5xy + (-y)(y) = 25x2 – y2

Ch. 8.5 Solving Quadratic Equations A quadratic equation is an equation in the form: ax2 + bx + c = 0 Notice this is a trinomial that is set equal to 0. If this trinomial can be factored, we can use the “Principle of Zero Products” to solve this equation. Principle of Zero Products If the product of two factors is zero, then at least one of the factors must be zero. That is, If a*b = 0, then a=0 or b=0. Example 1: Solve 2x2 + x = 6 This does not look at first like a quadratic equation, but if we subtract 6 from both sides, we will have a zero on the right side. 2x2 + x – 6 = 0 Now factor the polynomial. Is there a GCF of all terms? NO How many terms are there? 3 Is it degree 2? YES Is it the form ax2 + bx + c? YES. a=2, b=1, c=-6 ac =2*-6 = -12 b =1 Use factors -3 and 4 since -3+4 = 1 2x2 -3x+4x – 6 = 0 x(2x-3) + 2(2x-3) = 0 (2x-3)(x+2) = 0 The factors are 2x – 3 and x+2. If 2x – 3 = 0 Then 2x = 3 x = 3/2 If x + 2 = 0 x = -2 The possible solutions are x = 3/2 and x= -2 This solution set can be written in braces, not ().

Example 2: Solve: (x – 3)(x-20) = -10 We can’t use the “Zero Product Property yet because this product = -10, not 0. We must expand it , get everything on the left hand side and zero on the right hand side, then re-factor it. Example 3: The sum of the squares of two consecutive positive odd integers is equal to 130. Find the two integer. What are we being asked tofind? Two consective positive integers. Let n = first integer Let n + 2 = second integer. (If n=3, n+2 = 5, if n=5, n+2 = 7, etc…) Information: The sum of the squares of the two integers is 130. n2 + (n+2)2 = 130 n2 + n2 + 4n + 4 = 130 Simplify.. 2n2 + 4n + 4 = 130 Get everything on the left hand side. 2n2 + 4n - 126 = 0 Is there a GCF of all terms? YES: 2 2(n2 + 2n - 63) = 0 How many terms are inside the parentheses? 3 What degree? 2 What factors of -63 can be added to get the middle term, 2? 2( n )( n )= 0