Association between radiography-based subchondral bone structure and MRI-based cartilage composition in postmenopausal women with mild osteoarthritis 

Slides:



Advertisements
Similar presentations
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
Advertisements

Association between leisure time physical activity level and articular cartilage in postmenopausal women with mild knee osteoarthritis: a 12-month follow-up.
Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
In vivo comparison of delayed gadolinium-enhanced MRI of cartilage and delayed quantitative CT arthrography in imaging of articular cartilage  J. Hirvasniemi,
PQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage – associations to matrix composition.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density  W.D. Burnett, S.A. Kontulainen,
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Trabecular bone structure and spatial differences in articular cartilage MR relaxation times in individuals with posterior horn medial meniscal tears 
ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice  S. Hashimoto, M.F. Rai, K.L.
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
Cancellous bone changes in hip osteoarthritis: a short-term longitudinal study using fractal signature analysis  C.D. Papaloucas, M.D., Ph.D., R.J. Ward,
Bone marrow lesions are associated with altered trabecular morphometry
Knee joint subchondral bone structure alterations in active athletes: a cross-sectional case–control study  F.W. Roemer, M. Jarraya, J. Niu, J. Duryea,
Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI.
Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study  Elizabeth.
Women have thinner cartilage and smaller joint surfaces than men after adjustment for body height and weight  I.G. Otterness, Ph.D., F. Eckstein, M.D. 
S. Kauppinen, S. S. Karhula, J. Thevenot, T. Ylitalo, L. Rieppo, I
Cross-sectional DXA and MR measures of tibial periarticular bone associate with radiographic knee osteoarthritis severity  G.H. Lo, A.M. Tassinari, J.B.
Association between tibial subchondral bone structure from plain radiographs and cartilage composition from quantitative MRI in postmenopausal women with.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
F. Zhang, S. M. Bierma-Zeinstra, E. H. G. Oei, A. Turkiewicz, M
J. W. MacKay, P. J. Murray, B. Kasmai, G. Johnson, S. T. Donell, A. P
Risk factors for meniscal body extrusion on MRI in subjects free of radiographic knee osteoarthritis: longitudinal data from the Osteoarthritis Initiative 
M. Finnilä, O-M. Aho, V. Tiitu, J. Thevenot, J. Rautiainen, M
Osteophytes, juxta-articular radiolucencies and cancellous bone changes in the proximal tibia of patients with knee osteoarthritis  E.A. Messent, Ph.D.,
Osteoarthritis and Cartilage
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
Diagnostic performance of semi-quantitative knee ultrasonography – Comparison with magnetic resonance imaging osteoarthritis knee score (MOAKS): Data.
Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis  J. Hirvasniemi, J. Thevenot, V. Immonen,
Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods  P. Podsiadlo, Ph.D., L.
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
Is cartilage sGAG content related to early changes in cartilage disease? Implications for interpretation of dGEMRIC  J.J. Stubendorff, E. Lammentausta,
P. -H. Tsai, M. -C. Chou, H. -S. Lee, C. -H. Lee, H. -W. Chung, Y. -C
Functional adaptation of knee cartilage in asymptomatic female novice runners compared to sedentary controls. A longitudinal analysis using delayed Gadolinium.
Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis 
Diagnostic performance of knee ultrasonography for detecting degenerative changes of articular cartilage  S. Saarakkala, P. Waris, V. Waris, I. Tarkiainen,
DGEMRIC as a tool for measuring changes in cartilage quality following high tibial osteotomy: a feasibility study  M. Rutgers, L.W. Bartels, A.I. Tsuchida,
Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilisation of the medial meniscus and increased joint laxity  J.P.
Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis  J. Hirvasniemi, J. Thevenot, V. Immonen,
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
Quantitative MRI of parallel changes of articular cartilage and underlying trabecular bone in degeneration  E. Lammentausta, M.Sc., P. Kiviranta, B.M.,
In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model  F. Intema, H.A.W.
M. A. Karsdal, M. Sc. , Ph. D. , D. J. Leeming, M. Sc. , E. B. Dam, M
Joint loading and proximal tibia subchondral trabecular bone microarchitecture differ with walking gait patterns in end-stage knee osteoarthritis  B.C.
Subchondral tibial bone texture analysis predicts knee osteoarthritis progression: data from the Osteoarthritis Initiative  T. Janvier, R. Jennane, A.
Three-dimensional patterns of early acetabular cartilage damage in hip dysplasia; a high-resolutional CT arthrography study  S. Tamura, T. Nishii, T.
F.W. Roemer, M.D.  Osteoarthritis and Cartilage 
Volumetric bone mineral density of the tibia is not increased in subjects with radiographic knee osteoarthritis  M. Abdin-Mohamed, M.B.B.S., M.R.C.P.,
Tibial cancellous bone changes in patients with knee osteoarthritis
MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up 
X. Li, Ph. D. , C. Benjamin Ma, M. D. , T. M. Link, M. D. , D. -D
Microstructural analysis of collagen and elastin fibres in the kangaroo articular cartilage reveals a structural divergence depending on its local mechanical.
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
Pre-emptive, early, and delayed alendronate treatment in a rat model of knee osteoarthritis: effect on subchondral trabecular bone microarchitecture and.
Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and type 2 diabetes mellitus  C.Y. Wen, Y. Chen, H.L. Tang, C.H. Yan,
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
In vitro method for 3D morphometry of human articular cartilage chondrons based on micro-computed tomography  I. Kestilä, J. Thevenot, M.A. Finnilä, S.S.
Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition  M. Son, S.B. Goodman,
Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary.
In vivo structural analysis of subchondral trabecular bone in osteoarthritis of the hip using multi-detector row CT  K. Chiba, M. Ito, M. Osaki, M. Uetani,
Osteoarthritis year 2012 in review: biology
M. Hudelmaier, W. Wirth  Osteoarthritis and Cartilage 
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee  Gabrielle Blumenkrantz,
Longitudinal analysis of cartilage T2 relaxation times and joint degeneration in African American and Caucasian American women over an observation period.
General Information Osteoarthritis and Cartilage
Presentation transcript:

Association between radiography-based subchondral bone structure and MRI-based cartilage composition in postmenopausal women with mild osteoarthritis  J. Hirvasniemi, J. Thevenot, J. Multanen, M. Haapea, A. Heinonen, M.T. Nieminen, S. Saarakkala  Osteoarthritis and Cartilage  Volume 25, Issue 12, Pages 2039-2046 (December 2017) DOI: 10.1016/j.joca.2017.09.008 Copyright © 2017 The Author(s) Terms and Conditions

Fig. 1 Location of ROIs. Two ROIs (black rectangles with continuous line) were placed in subchondral bone immediately below the cartilage–bone interface in the middle part of the medial and lateral tibial plateaus and two ROIs (black squares with dashed line) immediately below the dense subchondral bone area. The purpose of the white dashed lines is to help place the ROIs in the middle of the tibial spine and outer border. Osteoarthritis and Cartilage 2017 25, 2039-2046DOI: (10.1016/j.joca.2017.09.008) Copyright © 2017 The Author(s) Terms and Conditions

Fig. 2 Statistically significant correlations between (a) HIAngles,Paral in medial subchondral bone and dGEMRIC index of medial tibial cartilage, (b) FDHor,0.51 mm in lateral subchondral bone and dGEMRIC index of lateral tibial cartilage, (c) FDVer,0.68 mm in medial subchondral bone and T2 relaxation time of medial tibial cartilage and (d) FDHor,0.51 mm in lateral subchondral bone and T2 relaxation time of lateral tibial cartilage. Osteoarthritis and Cartilage 2017 25, 2039-2046DOI: (10.1016/j.joca.2017.09.008) Copyright © 2017 The Author(s) Terms and Conditions

Fig. 3 Strength and direction of the correlation (Pearson's or Spearman's) between tibial cartilage composition and bone structure parameters in proximal tibia is color coded according to the grayscale bar. n = 93. *P < 0.05, **P < 0.01, SB = subchondral bone, TB = trabecular bone, ELap = entropy of Laplacian-based image, ELBP = entropy of local binary patterns, HIAngles,mean = mean HI for orientation of local patterns, HIAngles,Perp = HI perpendicularly to the bone trabeculae, HIAngles,Paral = HI along the trabeculae, FDHor = fractal dimension of horizontal structures, FDVer = fractal dimension of vertical structures. Osteoarthritis and Cartilage 2017 25, 2039-2046DOI: (10.1016/j.joca.2017.09.008) Copyright © 2017 The Author(s) Terms and Conditions

Supplementary Fig. 4 Strength and direction of the correlation (Pearson's or Spearman's) between tibial cartilage composition and bone structure parameters in proximal tibia for KL0/KL1 subjects (n = 39) is color coded according to the grayscale bar. *P < 0.05, **P < 0.01, SB = subchondral bone, TB = trabecular bone, ELap = entropy of Laplacian-based image, ELBP = entropy of local binary patterns, HIAngles,mean = mean homogeneity index (HI) for orientation of local patterns, HIAngles,Perp = HI perpendicularly to the bone trabeculae, HIAngles,Paral = HI along the trabeculae, FDHor = fractal dimension of horizontal structures, FDVer = fractal dimension of vertical structures. Osteoarthritis and Cartilage 2017 25, 2039-2046DOI: (10.1016/j.joca.2017.09.008) Copyright © 2017 The Author(s) Terms and Conditions

Supplementary Fig. 5 Strength and direction of the correlation (Pearson's or Spearman's) between tibial cartilage composition and bone structure parameters in proximal tibia for KL2 subjects (n = 54) is color coded according to the grayscale bar. Abbreviations are as per Supplementary Fig. 4. Osteoarthritis and Cartilage 2017 25, 2039-2046DOI: (10.1016/j.joca.2017.09.008) Copyright © 2017 The Author(s) Terms and Conditions