J. A. Waung, S. A. Maynard, S. Gopal, A. Gogakos, J. G. Logan, G. R

Slides:



Advertisements
Similar presentations
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Advertisements

B. J. Kim, D. -W. Kim, S. H. Kim, J. H. Cho, H. J. Lee, D. Y. Park, S
X. I. Gu, P. E. Palacio-Mancheno, D. J. Leong, Y. A. Borisov, E
Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics 
J. K. Meckes, B. Caramés, M. Olmer, W. B. Kiosses, S. P. Grogan, M. K
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Imaging following acute knee trauma
Changes in the T2 relaxation value of the tibiofemoral articular cartilage about 6 months after anterior cruciate ligament reconstruction using the double-bundle.
Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation.
Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis  T. Weng, Y. Xie, L. Yi, J. Huang,
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Next-generation Sequencing Identifies Articular Cartilage and Subchondral Bone Mirnas after ESWT on Early Osteoarthritis Knee  C.-J. Wang, J.-H. Cheng,
In vivo imaging of MMP-13 activity in the murine destabilised medial meniscus surgical model of osteoarthritis  N.H. Lim, E. Meinjohanns, M. Meldal, G.
S. Ogawa, Y. Awaga, M. Takashima, A. Hama, A. Matsuda, H. Takamatsu 
ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage.
K. Murata, N. Kanemura, T. Kokubun, T. Fujino, Y. Morishita, K
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography  D.D. McErlain, M.Sc., C.T.G. Appleton,
Cartilage MRI T2∗ relaxation time and perfusion changes of the knee in a 5/6 nephrectomy rat model of chronic kidney disease  C.-Y. Wang, Y.-J. Peng,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice  S. Hashimoto, M.F. Rai, K.L.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Low magnitude high frequency vibration accelerated cartilage degeneration but improved epiphyseal bone formation in anterior cruciate ligament transect.
H. Oka, M. D. , S. Muraki, M. D. , Ph. D. , T. Akune, M. D. , Ph. D
Acute mobilization and migration of bone marrow-derived stem cells following anterior cruciate ligament rupture  T. Maerz, M. Fleischer, M.D. Newton,
Knee joint subchondral bone structure alterations in active athletes: a cross-sectional case–control study  F.W. Roemer, M. Jarraya, J. Niu, J. Duryea,
Quantitative assessment of articular cartilage morphology via EPIC-μCT
The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse  S.S. Glasson, B.V.Sc., T.J. Blanchet, B.S., E.A.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Monoiodoacetic acid induces arthritis and synovitis in rats in a dose- and time- dependent manner: proposed model-specific scoring systems  M. Udo, T.
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Osteoarthritis and Cartilage
Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation 
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
Deficiency of hyaluronan synthase 1 (Has1) results in chronic joint inflammation and widespread intra-articular fibrosis in a murine model of knee joint.
Heterozygosity for an inactivating mutation in low-density lipoprotein-related receptor 6 (Lrp6) increases osteoarthritis severity in mice after ligament.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis  A.J. Ramme, M. Lendhey, J.G.
Dietary fatty acids differentially affect the development of injury-induced osteoarthritis with diet-induced obesity in mice  C.-L. Wu, D. Jain, D. Little,
P. -H. Tsai, M. -C. Chou, H. -S. Lee, C. -H. Lee, H. -W. Chung, Y. -C
Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic.
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
In vivo fluorescence reflectance imaging of protease activity in a mouse model of post- traumatic osteoarthritis  P.B. Satkunananthan, M.J. Anderson, N.M.
K.H. Collins, R.A. Reimer, R.A. Seerattan, T.R. Leonard, W. Herzog 
Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilisation of the medial meniscus and increased joint laxity  J.P.
Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis  J. Hirvasniemi, J. Thevenot, V. Immonen,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
Development of quantitative in vivo imaging of articular cartilage degradation in murine osteoarthritis  P. Das Neves Borges, M.M. Fowkes, P.E. Brennan,
Integrin α1β1 protects against signs of post-traumatic osteoarthritis in the female murine knee partially via regulation of epidermal growth factor receptor.
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis  B. Doyran, W. Tong,
R. Takaishi, T. Aoyama, X. Zhang, S. Higuchi, S. Yamada, T. Takakuwa 
R. J. U. Lories, M. D. , Ph. D. , J. Peeters, B. Sc. , K. Szlufcik, Ph
A novel in vivo murine model of cartilage regeneration
Subchondral Bone Plate Sclerosis during Late Osteoarthritis is Mediated by Loading- induced Decrease in Sclerostin Amount  X. Ma, H. Jia, W. Tong, Z. Yang,
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5  M. Harada, M.D., M. Takahara, M.D., Ph.D.,
Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and type 2 diabetes mellitus  C.Y. Wen, Y. Chen, H.L. Tang, C.H. Yan,
K.L. Caldwell, J. Wang  Osteoarthritis and Cartilage 
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
S. Chang, T. Yasui, S. Tanaka, T. Saito  Osteoarthritis and Cartilage 
Presentation transcript:

Quantitative X-ray microradiography for high-throughput phenotyping of osteoarthritis in mice  J.A. Waung, S.A. Maynard, S. Gopal, A. Gogakos, J.G. Logan, G.R. Williams, J.H.D. Bassett  Osteoarthritis and Cartilage  Volume 22, Issue 10, Pages 1396-1400 (October 2014) DOI: 10.1016/j.joca.2014.04.015 Copyright © 2014 The Authors Terms and Conditions

Fig. 1 Quantitative digital X-ray microradiography of subchondral bone. (A) Left panel shows mouse lower limb before and after removal of muscle to expose the articulated femur and tibia with preservation of the knee joint capsule and the patella. Right panels show lateral and anterior–posterior views of the knee fixed such that the tibial growth plate lies in a vertical plane. (B) Left panel shows a Faxitron MX-20 X-ray microradiograph illustrating the essential requirement to orientate the knee joint with the patella in the mid-sagittal plane. The recommended organisation of plastic, aluminium and steel calibration standards is also shown. White bar = 1000 μm. The upper right panel shows a histogram of grey levels derived from the original 16 bit DICOM X-ray microradiograph with the location of the calibration standards indicated. The large peak on the right represents the background. The lower right panel shows the histogram after stretching the grey scale distribution to the plastic and steel standards, converting to an 8 bit TIFF format and pseudo-colouring the resultant image using a 16 colour look-up table. (C) Left panel shows a grey scale image of the left knee joint with the medial tibial plateau subchondral bone ROI (1000 μm × 250 μm box, ROI) indicated. Right panel shows a pseudo-coloured TIFF image of the same grey scale image in which lower BMC is green and yellow and higher BMC is red and purple. White bar = 1000 μm. (D) Left panel shows a representative example of a relative frequency histogram of grey levels within the medial tibial plateau subchondral bone ROI. Right panel shows the cumulative frequency histogram of relative tibial plateau subchondral BMC in n = 22 female, 16-week-old wild-type mice (mean ± 2.0SD reference interval in grey, ±1.0SD red dotted lines). Median grey levels at the limits of the 2.0SD reference interval are shown. (E) Grey scale images of the right (8 weeks after surgical DMM) left knee (following sham surgery) joints. The white arrow indicates medial displacement of the medial meniscus following DMM surgery. Boxes indicate the medial tibial plateaux subchondral bone ROIs. White bar = 1000 μm. (F) Corresponding pseudo-coloured images in which lower BMC is green and yellow and higher BMC red and purple. The white arrow indicates increased subchondral BMC in the medial tibial plateau following DMM surgery. White bar = 1000 μm. (G) Coronal sections through the knee joint at the level of the tibial insertion of the anterior cruciate ligament stained with safranin O and fast green. Upper arrow indicates a defect in the articular cartilage surface of the medial tibial plateau, and the lower arrow indicates increased subchondral bone following DMM surgery. White bar = 1000 μm. (H) Left panel shows a montage of the medial tibial plateaux ROIs from male mice 8 weeks following DMM (n = 12) or sham (n = 12) surgery. Right panel shows the cumulative frequency histograms of tibial plateau subchondral BMC following DMM or sham surgery. Kolmogorov–Smirnov test, DMM vs sham, *P < 0.05. Osteoarthritis and Cartilage 2014 22, 1396-1400DOI: (10.1016/j.joca.2014.04.015) Copyright © 2014 The Authors Terms and Conditions

Fig. 2 Increased subchondral BMC in male and female mice following DMM surgery and in TRα0/0 mice. (A) Upper panels show grey scale images of the right and left knees 4 weeks after DMM or sham surgery in male mice. The white arrow indicates displacement of the medial meniscus following DMM surgery. Boxes indicate subchondral bone ROIs. Middle panels show corresponding pseudo-coloured images. The white arrow indicates increased subchondral BMC following DMM surgery. Lower left panel shows the ROI montage from male mice 4 weeks following DMM or sham surgery (n = 6 per group). Lower right panel shows the cumulative frequency histograms of tibial plateau subchondral BMC following DMM or sham surgery. Kolmogorov–Smirnov test, DMM vs sham, ***P < 0.001. White bar = 1000 μm. (B) Upper panels show grey scale images of the right and left knees 8 weeks after DMM or sham surgery in female mice. The white arrow indicates displacement of the medial meniscus following DMM surgery. Boxes indicate subchondral bone ROIs. Middle panels show corresponding pseudo-coloured images. The white arrow indicates increased subchondral BMC following DMM surgery. Lower left panel shows the ROI montage from female mice 8 weeks following DMM or sham surgery (n = 6 per group). Lower right panel shows the cumulative frequency histograms of tibial plateau subchondral BMC following DMM or sham surgery. Kolmogorov–Smirnov test, DMM vs sham, ***P < 0.001. White bar = 1000 μm. (C) Upper panels show grey scale images of the left knee from 26-week-old male wild-type and TRα0/0 mice. Boxes indicate subchondral bone ROIs. Middle panels show corresponding pseudo-coloured images. The white arrow indicates increased subchondral BMC in TRα0/0 mice. Lower left panel shows the ROI montage from wild-type and TRα0/0 mice (n = 6 per group). Lower right panel shows the cumulative frequency histograms of tibial plateau subchondral BMC with the ROI median grey level in wild-type and TRα0/0 mice indicated. Kolmogorov–Smirnov test, TRα0/0 vs wild type, ***P < 0.001. White bar = 1000 μm. Osteoarthritis and Cartilage 2014 22, 1396-1400DOI: (10.1016/j.joca.2014.04.015) Copyright © 2014 The Authors Terms and Conditions