Volume 37, Issue 3, Pages (May 2016)

Slides:



Advertisements
Similar presentations
Adhesion Disengagement Uncouples Intrinsic and Extrinsic Forces to Drive Cytokinesis in Epithelial Tissues  Charlène Guillot, Thomas Lecuit  Developmental.
Advertisements

Molecular Tattoo: Subcellular Confinement of Drug Effects
Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient
Volume 20, Issue 2, Pages (January 2010)
Two Phases of Astral Microtubule Activity during Cytokinesis in C
Dual Modes of Cdc42 Recycling Fine-Tune Polarized Morphogenesis
Wei-Hsiang Lin, Edo Kussell  Current Biology 
Philsang Hwang, Shih-Wei Chou, Zongwei Chen, Brian M. McDermott 
Volume 35, Issue 2, Pages (October 2015)
Myosin II Dynamics Are Regulated by Tension in Intercalating Cells
Dynamics of interphase microtubules in Schizosaccharomyces pombe
Volume 5, Issue 6, Pages (December 2013)
Rab6 Regulates Transport and Targeting of Exocytotic Carriers
Emergence of an Apical Epithelial Cell Surface In Vivo
Volume 34, Issue 2, Pages (July 2015)
Volume 17, Issue 2, Pages (August 2009)
Differential Dynamics of Platelet Contact and Spreading
Volume 27, Issue 6, Pages (March 2017)
Janet H. Iwasa, R. Dyche Mullins  Current Biology 
Golgi Outposts Shape Dendrite Morphology by Functioning as Sites of Acentrosomal Microtubule Nucleation in Neurons  Kassandra M. Ori-McKenney, Lily Yeh.
Transiently Reorganized Microtubules Are Essential for Zippering during Dorsal Closure in Drosophila melanogaster  Ferenc Jankovics, Damian Brunner  Developmental.
Volume 136, Issue 6, Pages (March 2009)
Single-Molecule Microscopy Reveals Plasma Membrane Microdomains Created by Protein-Protein Networks that Exclude or Trap Signaling Molecules in T Cells 
And the Dead Shall Rise: Actin and Myosin Return to the Spindle
Amy Shaub Maddox, Lindsay Lewellyn, Arshad Desai, Karen Oegema 
Volume 25, Issue 15, Pages (August 2015)
Kai Yuan, Patrick H. O’Farrell  Current Biology 
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
A Map for Horizontal Disparity in Monkey V2
Volume 36, Issue 3, Pages (February 2016)
Fat2 and Lar Define a Basally Localized Planar Signaling System Controlling Collective Cell Migration  Kari Barlan, Maureen Cetera, Sally Horne-Badovinac 
Volume 15, Issue 5, Pages (May 2014)
Volume 18, Issue 20, Pages (October 2008)
Volume 39, Issue 5, Pages (December 2016)
Volume 27, Issue 9, Pages (May 2017)
Dual Modes of Cdc42 Recycling Fine-Tune Polarized Morphogenesis
Volume 22, Issue 5, Pages (May 2012)
The Timing of Midzone Stabilization during Cytokinesis Depends on Myosin II Activity and an Interaction between INCENP and Actin  Jennifer Landino, Ryoma.
Volume 25, Issue 20, Pages (October 2015)
Volume 103, Issue 10, Pages (November 2012)
Volume 24, Issue 3, Pages (February 2013)
Stephanie C. Weber, Clifford P. Brangwynne  Current Biology 
Jen-Yi Lee, Richard M. Harland  Current Biology 
Marko Kaksonen, Christopher P. Toret, David G. Drubin  Cell 
Volume 30, Issue 4, Pages (May 2008)
Volume 23, Issue 9, Pages (May 2013)
Anne Pelissier, Jean-Paul Chauvin, Thomas Lecuit  Current Biology 
Volume 43, Issue 4, Pages e10 (November 2017)
Volume 24, Issue 5, Pages (March 2014)
Steven Z. DeLuca, Patrick H. O'Farrell  Developmental Cell 
Giulia Varsano, Yuedi Wang, Min Wu  Cell Reports 
Justin Crest, Kirsten Concha-Moore, William Sullivan  Current Biology 
Regulation of Golgi Cisternal Progression by Ypt/Rab GTPases
Yu-Chiun Wang, Zia Khan, Eric F. Wieschaus  Developmental Cell 
Volume 12, Issue 3, Pages (March 2007)
Profilin Directly Promotes Microtubule Growth through Residues Mutated in Amyotrophic Lateral Sclerosis  Jessica L. Henty-Ridilla, M. Angeles Juanes,
Volume 24, Issue 12, Pages (June 2014)
Volume 26, Issue 13, Pages e4 (March 2019)
Anna Marie Sokac, Eric Wieschaus  Developmental Cell 
Spatio-Temporal Regulation of Rac1 Localization and Lamellipodia Dynamics during Epithelial Cell-Cell Adhesion  Jason S. Ehrlich, Marc D.H. Hansen, W.James.
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Volume 23, Issue 11, Pages (June 2013)
Volume 23, Issue 9, Pages (May 2013)
How Cells Tiptoe on Adhesive Surfaces before Sticking
Volume 34, Issue 2, Pages (July 2015)
Volume 21, Issue 11, Pages (June 2011)
Emergence of an Apical Epithelial Cell Surface In Vivo
Marko Kaksonen, Yidi Sun, David G. Drubin  Cell 
Yuki Hara, Christoph A. Merten  Developmental Cell 
Volume 21, Issue 7, Pages (April 2011)
Presentation transcript:

Volume 37, Issue 3, Pages 267-278 (May 2016) Membrane Supply and Demand Regulates F-Actin in a Cell Surface Reservoir  Lauren Figard, Mengyu Wang, Liuliu Zheng, Ido Golding, Anna Marie Sokac  Developmental Cell  Volume 37, Issue 3, Pages 267-278 (May 2016) DOI: 10.1016/j.devcel.2016.04.010 Copyright © 2016 Elsevier Inc. Terms and Conditions

Developmental Cell 2016 37, 267-278DOI: (10.1016/j.devcel.2016.04.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 1 Exocytosis Delivers Membrane that Is Stored in a Microvillar Reservoir (A) The progression of cellularization. Nuclei are labeled “N”. Green block indicates cycle 13. Gray/orange block indicates cellularization at cycle 14. Throughout cellularization, reservoir unfolding and depletion fuel furrow ingression. Arrowheads mark time of BFA injection in cycle 13 (13), early cellularization (14E), and mid-cellularization (14M). (B) Time-lapse z stacks, encompassing the microvilli (MV), are collapsed into maximum intensity projections (Z projections). (C) Z projections of Venus-PH-PLCδ in DMSO- (Control) or BFA-injected embryos show depletion of MV membrane over time. 0 min is onset of cellularization. Injection time 14E. (D) Time to reach 25% depletion of MV membrane fluorescence for DMSO- (Control) or BFA-injected Venus-PH-PLCδ embryos. Injection time 14E. Each square represents one embryo (N ≥ 7 embryos per condition; horizontal bold lines are means ± SE; ∗∗p < 0.001, Student's t test). (E) Final furrow lengths for DMSO- (Control) or BFA-injected Sqh-GFP embryos. Injection times indicated. Each square represents one embryo (N = 8 embryos per condition; horizontal bold lines are mean ± SE; p < 0.001, one-way ANOVA; ∗∗p < 0.001; n.s., not significant; Holm-Sidak post hoc test). See also Figure S1. Developmental Cell 2016 37, 267-278DOI: (10.1016/j.devcel.2016.04.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 2 The Microvillar F-Actin Scaffold Is Dynamic (A) XZ projection of F-actin (phalloidinAx546) in microvilli (MV) of a fixed wild-type embryo. (B) Z projection of embryo in (A). Example MV in two orientations: head-on MV (orange) grow orthogonal to the surface, and lying-down MV (green) grow parallel to the surface. (C) Time-lapse TIRF images of an extending/retracting microvillus (F-actin; Utrophin-mCherry) in a head-on orientation. Numbers are seconds; 0 s marks onset of extension. Scale bar, 0.5 μm. (D) F-actin fluorescence versus time for the microvillus in (C). (E) Time-lapse TIRF images of an extending/retracting microvillus (F-actin; Utrophin-mCherry) in a lying-down orientation. Numbers are seconds; 0 s marks onset of extension. Scale bar, 1 μm. (F) Length versus time for the microvillus in (E). (G) Lifetimes of MV in head-on and lying-down orientations. Each circle represents one microvillus (N ≥ 62 MV from five embryos per method; horizontal bold lines are means ± SD). (H) TIRF images of F-actin at the surface of Utrophin-mCherry embryos at cellularization or gastrulation. See also Movie S1. Developmental Cell 2016 37, 267-278DOI: (10.1016/j.devcel.2016.04.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 3 Dynamic F-Actin Is Required to Maintain the Microvilli (A) Time-lapse confocal cross-sections show FRAP of microvillar F-actin (MV; rhodamine G-actin) in buffer- (Control) or phalloidin-injected embryos. Yellow box is the bleached region. (B) MV F-actin FRAP in buffer- (Control) or phalloidin-injected embryos (N ≥ 4 embryos per condition; mean ± SE). 0 s is the first frame after bleaching. (C) Representation of injection and imaging sites for (D). (D) Confocal cross-sections of Utrophin-mCherry show F-actin levels ∼1 min after injection of DMSO (Control) or LatA. Arrowhead marks injection site. (E) MV F-actin fluorescence versus distance from injection site for embryos in (D). Developmental Cell 2016 37, 267-278DOI: (10.1016/j.devcel.2016.04.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 4 Microvillar F-Actin Is Depleted In Sync with Furrow Ingression (A) Z projections of Utrophin-mCherry show depletion of microvillar (MV) F-actin over time. (B) MV F-actin fluorescence versus time during cellularization (N = 12 embryos; mean ± SE). (C) Average normalized MV F-actin fluorescence (N = 12 embryos; mean ± SD) versus average normalized MV membrane fluorescence (Venus-PH-PLCδ; N = 4 embryos; mean ± SD). (D) Average normalized MV F-actin fluorescence versus furrow length (N = 12 embryos; mean ± SD). For (B)–(D), the slow ingression/depletion phase is shaded in blue. Shading is based on transition from slow to fast phase as defined in Figard et al. (2013). For (C) and (D), the line is a linear least-square fit. See also Figure S2. Developmental Cell 2016 37, 267-278DOI: (10.1016/j.devcel.2016.04.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 5 Microvillar F-Actin Depletion Is Coupled to Furrow Ingression (A and B) The WGA nuclear crosslinking experiment. In (A) control embryos, furrow tips ingress between nuclei (gray ovals) making an even furrow front (orange line). In (B) WGA-injected embryos, crosslinked nuclei (red ovals) make a local barrier, impeding furrow ingression and generating a curved furrow front. (C and D) Confocal cross-sections of microvillar F-actin (Utrophin-mCherry; green) in cellularizing embryos ∼40 min after (C) buffer (Control) or (D) WGAAx488 injection (red). Channels are pseudocolored for presentation. Furrow tips traced (orange). Arrowheads mark injection sites. (E and F) MV F-actin fluorescence (green) and furrow length (orange) versus distance from injection site in (E) buffer- (Control) or (F) WGAAx488-injected Utrophin-mCherry embryos (N = 8 embryos per condition; mean ± SE). (G and H) MV F-actin fluorescence versus percent max furrow length in (G) buffer- (Control) or (H) WGAAx488-injected Utrophin-mCherry embryos (N = 176 data points from eight embryos per condition). Dark circles represent binned data (mean ± SE). For (F and H), zones are as described in the Results. See also Figure S3. Developmental Cell 2016 37, 267-278DOI: (10.1016/j.devcel.2016.04.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 6 Exocytosis Promotes Microvillar F-Actin Assembly (A and B) Confocal cross-sections of GalT-GFP (blue) in (A) buffer- (Control) and (B) WGAAx594-injected (red) embryos show Golgi bodies. Arrowheads mark injection sites. GalT-GFP channel is pseudocolored for presentation. (C and D) Golgi fluorescence versus distance from the injection site in (C) buffer- (Control) and (D) WGAAx594-injected (red) GalT-GFP embryos (N = 8 embryos per condition; mean ± SE). (E) Z projections of Utrophin-mCherry in DMSO- (Control) or BFA-injected embryos showing depletion of microvillar F-actin over time. 0 min is onset of cellularization. (F) Time to reach 25% depletion of microvillar F-actin fluorescence in DMSO- (Control) or BFA-injected Utrophin-mCherry embryos. For (E) and (F), injection time 14E. Each square represents one embryo (N ≥ 4 embryos per condition; horizontal bold lines are means ± SE; ∗∗p < 0.001, Student's t test). See also Figures S4 and S5. Developmental Cell 2016 37, 267-278DOI: (10.1016/j.devcel.2016.04.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 7 Furrow Ingression Regulates Microvillar F-Actin Depletion (A) Z projections of Utrophin-mCherry in buffer-injected (Control) or slamRNAi embryos showing microvillar F-actin over time. (B) Furrow length versus time for Sqh-GFP embryos after slamRNAi (purple; N = 47 trajectories from eight embryos). A typical furrow trajectory from a buffer-injected (Control) Sqh-GFP embryo is shown for comparison (black). (C) Microvillar F-actin fluorescence versus time for Utrophin-mCherry embryos after slamRNAi (purple) or buffer injection (Control; black; N = 12 or 6 embryos for slamRNAi or controls, respectively; mean ± SE). Developmental Cell 2016 37, 267-278DOI: (10.1016/j.devcel.2016.04.010) Copyright © 2016 Elsevier Inc. Terms and Conditions