The Simplex Method: Nonstandard Problems

Slides:



Advertisements
Similar presentations
1. Set up the phase 1 dictionary for this problem and make the first pivot: Maximize X 1 + X X 3 + X 4 subject to -X 1 + X X 4 ≤ -3 -X 1 +
Advertisements

Standard Minimization Problems with the Dual
Operation Research Chapter 3 Simplex Method.
Nonstandard Problmes Produced by E. Gretchen Gascon.
LECTURE 14 Minimization Two Phase method by Dr. Arshad zaheer
Chapter 6 Linear Programming: The Simplex Method
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc
Computational Methods for Management and Economics Carla Gomes Module 6a Introduction to Simplex (Textbook – Hillier and Lieberman)
Sections 4.1 and 4.2 The Simplex Method: Solving Maximization and Minimization Problems.
4.1 Slack Variables and the Simplex Method Maximizing Objective Functions Maximize the objective function subject to: What would this look like?
9.4 Linear programming and m x n Games: Simplex Method and the Dual Problem In this section, the process of solving 2 x 2 matrix games will be generalized.
1. The Simplex Method for Problems in Standard Form 1.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
Linear Inequalities and Linear Programming Chapter 5
The Simplex Method: Standard Maximization Problems
5.4 Simplex method: maximization with problem constraints of the form
The Simplex Algorithm An Algorithm for solving Linear Programming Problems.
1 Linear programming simplex method This presentation will help you to solve linear programming problems using the Simplex tableau.
Minimization by Dr. Arshad zaheer
Finite Mathematics & Its Applications, 10/e by Goldstein/Schneider/SiegelCopyright © 2010 Pearson Education, Inc. 1 of 99 Chapter 4 The Simplex Method.
5.6 Maximization and Minimization with Mixed Problem Constraints
Chapter 4 The Simplex Method
6  Graphing Systems of Linear Inequalities in Two Variables  Linear Programming Problems  Graphical Solutions of Linear Programming Problems  The Simplex.
Linear Programming - Standard Form
Learning Objectives for Section 6.2
Chapter 6 Linear Programming: The Simplex Method
8. Linear Programming (Simplex Method) Objectives: 1.Simplex Method- Standard Maximum problem 2. (i) Greedy Rule (ii) Ratio Test (iii) Pivot Operation.
Simplex Algorithm.Big M Method
Chapter 6 Linear Programming: The Simplex Method Section 2 The Simplex Method: Maximization with Problem Constraints of the Form ≤
This presentation shows how the tableau method is used to solve a simple linear programming problem in two variables: Maximising subject to two  constraints.
ECE 556 Linear Programming Ting-Yuan Wang Electrical and Computer Engineering University of Wisconsin-Madison March
Topic III The Simplex Method Setting up the Method Tabular Form Chapter(s): 4.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.4 The student will be able to set up and solve linear programming problems.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Setting Up the Initial Simplex Tableau and Finding the Pivot Element Example 4.2 # 17 Produced by E. Gretchen Gascon.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Public Policy Modeling Simplex Method Tuesday, October 13, 2015 Hun Myoung Park, Ph.D. Public Management & Policy Analysis Program Graduate School of International.
The Simplex Method. Standard Linear Programming Problem Standard Maximization Problem 1. All variables are nonnegative. 2. All the constraints (the conditions)
Simplex Method Adapting to Other Forms.  Until now, we have dealt with the standard form of the Simplex method  What if the model has a non-standard.
4  The Simplex Method: Standard Maximization Problems  The Simplex Method: Standard Minimization Problems  The Simplex Method: Nonstandard Problems.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
10/2 The simplex algorithm. In an augmented matrix, if a column has a 1 and all other entries 0, it is said to be ‘in solution’. The 1 is called a ‘pivot’
1 1 Slide © 2005 Thomson/South-Western Linear Programming: The Simplex Method n An Overview of the Simplex Method n Standard Form n Tableau Form n Setting.
Chapter 4 Linear Programming: The Simplex Method
Chapter 6 Linear Programming: The Simplex Method Section 4 Maximization and Minimization with Problem Constraints.
THE SIMPLEX ALGORITHM Step 1 The objective row is scanned and the column containing the most negative term is selected (pivotal column) - indicate with.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.3 The student will be able to formulate the dual problem. The student.
10/9 More optimization Test 2 is scheduled for next Monday, October pm Come to this room, FB 200, to take the test. This is a room change from what.
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Linear Programming: An Algebraic Approach 4 The Simplex Method with Standard Maximization.
Decision Support Systems INF421 & IS Simplex: a linear-programming algorithm that can solve problems having more than two decision variables.
GOOD MORNING CLASS! In Operation Research Class, WE MEET AGAIN WITH A TOPIC OF :
The Simplex Method. and Maximize Subject to From a geometric viewpoint : CPF solutions (Corner-Point Feasible) : Corner-point infeasible solutions 0.
Simplex Algorithm.Big M Method
Chap 10. Sensitivity Analysis
Linear programming Simplex method.
Chapter 4 Linear Programming: The Simplex Method
The Simplex Method: Standard Minimization Problems
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
Well, just how many basic
Linear programming Simplex method.
D1 Discrete Mathematics
Copyright © 2019 Pearson Education, Inc.
LINEAR PROGRAMMING Example 1 Maximise I = x + 0.8y
Chapter 10: Iterative Improvement
Part 4 Nonlinear Programming
Simplex Tableau Method
THE SIMPLEX ALGORITHM Step 1
Presentation transcript:

The Simplex Method: Nonstandard Problems Section 4.3 The Simplex Method: Nonstandard Problems

Ex. A nonstandard maximization problem: Maximize P = 8x + 3y Subject to First change the inequalities to less than or equal to. Now proceed with the simplex method

Introduce slack variables to make equations out of the inequalities and set the objective function = 0: The initial tableau and notice v = –2 (not feasible): We need to pivot to a feasible solution

Ratios 8 2 Locate any negative number in the constant column ( –2). Now go to the first negative to the left of that constant (–1). This determines the pivot column. The pivot row is found by examining the positive ratios. So –1 is our pivot. Create unit column

New pivot since it is the only positive ratio Note: now we have a feasible solution proceed with simplex

This is the final tableau: x = 2, y = 4, P = 28

The Simplex Method for Nonstandard Problems If necessary, rewrite as a maximization problem. If necessary, rewrite inequalities as less or equal to. Introduce slack variables and write simplex tableau. If no negative constants (upper column) use simplex method, otherwise go to step 5. Pick a negative entry in a row with a negative constant (this is the pivot column). Compute positive ratios to determine pivot row. Then pivot and return to step 4.