Elements of Life 25 elements Hint: Remember CHNOPS 96% : C, O, H, N ~ 4% : P, S, Ca, K & trace elements (ex: Fe, I) Hint: Remember CHNOPS
Bonds Covalent Ionic Hydrogen All important to life Form cell’s molecules Quick reactions/ responses H bonds to other electronegative atoms Strong bond Weaker bond (esp. in H2O) Even weaker Made and broken by chemical reactions
1. Polarity of H2O O- will bond with H+ on a different molecule of H2O = hydrogen bond H2O can form up to 4 bonds
Examples of Benefits to Life H2O Property Chemical Explanation Examples of Benefits to Life Cohesion polar H-bond like-like ↑gravity plants, trees transpiration Adhesion unlike-unlike plants xylem bloodveins Surface Tension diff. in stretch break surface bugswater Specific Heat Absorbs & retains E oceanmoderates temps protect marine life (under ice) Evaporation liquidgas KE Cooling Homeostasis Universal Substance Polarityionic Good dissolver solvent
ie. amino acid peptide polypeptide protein Monomers Polymers Macromolecules Small organic Used for building blocks of polymers Connects with condensation reaction (dehydration synthesis) Long molecules of monomers With many identical or similar blocks linked by covalent bonds Giant molecules 2 or more polymers bonded together ie. amino acid peptide polypeptide protein larger smaller
Dehydration Synthesis (Condensation Reaction) Hydrolysis Make polymers Breakdown polymers Monomers Polymers Polymers Monomers A + B AB AB A + B + H2O + + H2O +
Differ in position & orientation of glycosidic linkage I. Carbohydrates Fuel and building Sugars are the smallest carbs Provide fuel and carbon monosaccharide disaccharide polysaccharide Monosaccharides: simple sugars (ie. glucose) Polysaccharides: Storage (plants-starch, animals-glycogen) Structure (plant-cellulose, arthropod-chitin) Differ in position & orientation of glycosidic linkage
II. Lipids Fats: store large amounts of energy saturated, unsaturated, polyunsaturated Steroids: cholesterol and hormones Phospholipids: cell membrane hydrophilic head, hydrophobic tail creates bilayer between cell and external environment Hydrophilic head Hydrophobic tail
Four Levels of Protein Structure: Primary Amino acid sequence 20 different amino acids peptide bonds Secondary Gains 3-D shape (folds, coils) by H-bonding α helix, β pleated sheet Tertiary Bonding between side chains (R groups) of amino acids H & ionic bonds, disulfide bridges Quaternary 2+ polypeptides bond together
amino acids polypeptides protein
Protein structure and function are sensitive to chemical and physical conditions Unfolds or denatures if pH and temperature are not optimal