The patient is being ventilated with 2 types of breaths.

Slides:



Advertisements
Similar presentations
Trigger/Limit/Cycle/Baseline
Advertisements

BASICS OF WAVEFORM INTERPRETATION Michael Haines, MPH, RRT-NPS, AE-C
Mechanical Ventilation Graphical Assessment
 Understand the dual control concept  Understand the pressure regulation mechanism in PRVC  Demonstration of PRVC  Settings and adjustment with Servo.
Ventilatory Modes. Volume Controlled Mandatory Breath Gas is delivered at a constant flow until the set tidal volume is reached. Pressure rises to a.
Comparison of lungs excised from rats ventilated with peak pressure of 14 cm H2O, zero positive end-expiratory pressure (PEEP); peak pressure 45 cm H2O,
Basic Concepts in Adult Mechanical Ventilation
Ventilators Tom Williams.
The changes in peak flow and inspiratory time between a minimum rise time (first 2 breaths) and a maximum rise time (last 2 breaths), with the Servo-i.
Airway pressure and flow waveforms during constant flow volume control ventilation, illustrating the effect of an end-inspiratory breath-hold. Airway pressure.
Trigger pressure-time product (PTP) with zero pressure support, with no leak, medium leak, and large leak. Trigger pressure-time product (PTP) with zero.
Relationship between the recruited volume and the arithmetic mean of the ratios of lung density at PEEP 15 cm H2O to lung density at PEEP 5 cm H2O (μP15/P5)
Mechanical Ventilation: State of the Art
Air flow during ventilator-supported speech production.
Flow chart of pressure support test and spontaneous breathing trial (SBT). Flow chart of pressure support test and spontaneous breathing trial (SBT). The.
Shape-signal method of triggering combines shape signal (A) and volume (B) methods of triggering. Shape-signal method of triggering combines shape signal.
Even though this patient is undergoing positive-pressure mechanical ventilation, the first 4 breaths have a relatively negative pressure (ie, pressure.
Noninvasive ventilation-neurally adjusted ventilatory assist (NIV-NAVA) where each patient effort is captured but support is insufficient (maximum electrical.
Differences in the distribution of lung densities in a patient with ARDS on a computed tomography scan between supine position (top) and prone position.
A: Pressure (green) and volume (black)/time curve in airway pressure release ventilation (APRV). A: Pressure (green) and volume (black)/time curve in airway.
An example of delayed cycling during pressure-support ventilation of a patient with COPD, on a Puritan Bennett 7200 ventilator, which has a flow-termination.
Box plots comparing peak inspiratory pressures (PIP) causing the 4 main experimental outcomes: bradycardia, hypotension, asystole, and pneumothorax. Box.
The third breath has a negative deflection (ie, below PEEP) at the end of the mechanical breath (arrow A) associated with a flow increase (arrow B), indicating.
Asynchrony index at baseline and following optimization of pressure support (PS) level (A), and following optimization of mechanical inspiratory time (mechanical.
Example airway pressure and rib-cage impedance in a premature infant supported with the biphasic mode of SiPAP (“sigh” positive airway pressure) from the.
Simulated screenshot of flow starvation in volume control continuous mandatory ventilation. Simulated screenshot of flow starvation in volume control continuous.
Characteristics of a pressure-supported breath.
The peak flows (60 L/min) and flow patterns are the same for all the breaths. The peak flows (60 L/min) and flow patterns are the same for all the breaths.
During this tracing of 30 seconds, the ventilator displays that the patient rate is 16 breaths/min. During this tracing of 30 seconds, the ventilator displays.
Comparison of airway pressure release ventilation (APRV) (blue curve) and biphasic positive airway pressure (BIPAP) (black curve). Comparison of airway.
A: Machine-triggered intermittent mandatory ventilation (IMV) with inadequate patient triggering of mandatory breaths. A: Machine-triggered intermittent.
Trigger and synchronization windows.
Top: Stress index (SI) in a patient early in the course of ARDS
Pressure, flow, volume, and electrical activity of the diaphragm (EAdi) waveforms from a patient on pressure support ventilation, and the presumed pressure.
Pressure, flow, volume, and electrical activity of the diaphragm (EAdi) waveforms from a patient on pressure support ventilation, and the presumed pressure.
In this tracing of 30 seconds, 4 breaths are ineffectively triggered (arrows IT) and 7 are effectively triggered. In this tracing of 30 seconds, 4 breaths.
A 2-min recording showing periodic breathing, stable delivered pressure, and fluctuating oxygen saturation in a premature neonate supported by nasal intermittent.
This tracing depicts 30 seconds of information.
Graphic representation of a dynamic airway pressure scalar during volume control ventilation with a constant inspiratory flow. Graphic representation of.
Work rate as a function of pressurization rate and cycling-off threshold, during pressure-support ventilation of (A) patients with acute lung injury (ALI),
Schematic drawing of alveolar sizes at upper (A), middle (B), and lower dependent (C) lung regions at end expiration and end inspiration. Schematic drawing.
Effect of respiratory mechanics on cycling of pressure support from inhalation to exhalation. Effect of respiratory mechanics on cycling of pressure support.
Esophageal pressure, airway pressure, and transpulmonary pressure (PL) with PEEP set at 26 cm H2O (same patient as Fig. 24). Esophageal pressure, airway.
Negative pressures calculated with the Rosen and Hillard formula
Control circuit for an adaptive pressure targeting scheme (eg, Pressure Regulated Volume Control). Control circuit for an adaptive pressure targeting scheme.
Assembly used to convert a standard ventilator to an intermittent mandatory ventilation circuit. Assembly used to convert a standard ventilator to an intermittent.
Venn diagram illustrating how the mode taxonomy can be viewed in terms of discriminating features and defining features. Venn diagram illustrating how.
A: Functional electrical impedance tomographic tidal image of a patient with a pneumothorax. A: Functional electrical impedance tomographic tidal image.
The cause of asynchrony during volume-targeted ventilation and total asynchrony index. The cause of asynchrony during volume-targeted ventilation and total.
Graphical representation of the locations where spontaneous breaths may occur during the airway pressure (Paw) release ventilation ventilatory cycle. Graphical.
Mean inspiratory work of breathing during assisted breaths and spontaneous breaths across the spectrum of ventilatory support continuous mandatory ventilation.
Flow, airway pressure, and transversus abdominis electromyogram (EMG) waveforms from a mechanically ventilated patient with COPD receiving pressure-support.
Schematic of mechanisms behind the better recruitment of alveoli with spontaneous breathing. Schematic of mechanisms behind the better recruitment of alveoli.
Plots of alveolar PO2, hemoglobin saturation, and alveolar PCO2 as a function of alveolar ventilation in a normal subject at sea level (inspired oxygen.
Components of a patient-triggered mechanical breath.
FEV1 and FVC for the control group (without noninvasive ventilation [NIV]), NIV with an inspiratory pressure (IPAP) of 15 cm H2O and expiratory pressure.
Determinants of patient-ventilator interaction.
Physical variables affecting FIO2 of nasal cannula with increasing breathing frequency (f), at flows from 1–5 L/min. Physical variables affecting FIO2.
Correlation between maximum inspiratory pressure and inspiratory load compensation (ILC) ventilatory variables in the 16 difficult-to-wean subjects, prior.
Airway pressure and flow graphics illustrate delayed cycling.
Ventilation protocol. Ventilation protocol. The PEEP group raised peak inspiratory pressure (PIP) through 5-cm H2O PEEP increments every 2 min while keeping.
A: Work of breathing before and after nebulized terbutaline delivered via standard nebulization method versus delivered during continuous positive airway.
Inspiratory load compensation responses before and after inspiratory muscle strength training (IMST) in the unweaned versus weaned subjects, with a 10.
The changes in peak flow and inspiratory time between a minimum rise time (first 2 breaths) and a maximum rise time (last 2 breaths), with the Servo-i.
For inspiratory load compensation testing, this threshold positive expiratory pressure (PEP) training device was inverted and connected to a respiratory.
Enhancing flow synchrony with a variable flow, pressure-targeted breath. Enhancing flow synchrony with a variable flow, pressure-targeted breath. In the.
Difference between mid-frequency ventilation (MFV), volume control continuous mandatory ventilation (VC-CMV), and pressure control CMV (PC-CMV) when frequency.
Coefficients of variation across ventilation modes and ARDS categories for each combination of effort and breathing frequency. Coefficients of variation.
Minute-by-minute means of breathing variables during the spontaneous breathing trial for the groups of subjects with trial success (n = 32) and failure.
Representative waveforms for each of the devices tested from which the oscillatory f was counted. Representative waveforms for each of the devices tested.
Presentation transcript:

The patient is being ventilated with 2 types of breaths. The patient is being ventilated with 2 types of breaths. In the breaths with the higher peak pressure, higher peak flow, and larger tidal volume, the flow returns to zero half way into mechanical inspiration. The patient has stopped inspiration but the ventilator is continuing to deliver pressure. Pressure equilibration has been reached (arrows A) and no further flow is delivered. This patient is being ventilated with synchronized intermittent mandatory ventilation and pressure support. The PEEP is 10 cm H2O. The mandatory breaths (arrows A) are pressure-control breaths (28 cm H2O delivered for 1.70 s), resulting in a peak pressure of 38 cm H2O. The pressure-support breaths (10 cm H2O) have a cycling sensitivity that can be computed graphically: the flow ceases when it is a quarter of the peak flow, indicating that the cycling sensitivity is 25%. The PEEP is 10 cm H2O. The patient is ventilated with synchronized intermittent mandatory ventilation and pressure support. Marjolein de Wit Respir Care 2011;56:61-72 (c) 2012 by Daedalus Enterprises, Inc.