Adsorption of Frog Foam Nest Proteins at the Air-Water Interface

Slides:



Advertisements
Similar presentations
Mesoscale Simulation of Blood Flow in Small Vessels Prosenjit Bagchi Biophysical Journal Volume 92, Issue 6, Pages (March 2007) DOI: /biophysj
Advertisements

Volume 94, Issue 11, Pages (June 2008)
Physical properties, molecular structures, and protein quality of texturized whey protein isolate: Effect of extrusion moisture content1  P.X. Qi, C.I.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Kejing Chen, Samir K. Ballas, Roy R. Hantgan, Daniel B. Kim-Shapiro 
Volume 102, Issue 8, Pages (April 2012)
Volume 110, Issue 3, Pages (February 2016)
Water-Soluble Hybrid Nanoclusters with Extra Bright and Photostable Emissions: A New Tool for Biological Imaging  Natallia Makarava, Alexander Parfenov,
Volume 90, Issue 2, Pages (January 2006)
Volume 103, Issue 9, Pages (November 2012)
Maria A. Vorontsova, Ho Yin Chan, Vassiliy Lubchenko, Peter G. Vekilov 
Backbone Dynamics of the 18
Volume 86, Issue 2, Pages (February 2004)
Evaluation of the Information Content in Infrared Spectra for Protein Secondary Structure Determination  Erik Goormaghtigh, Jean-Marie Ruysschaert, Vincent.
Volume 96, Issue 12, Pages (June 2009)
Volume 88, Issue 4, Pages (April 2005)
Volume 104, Issue 1, Pages (January 2013)
Volume 96, Issue 6, Pages (March 2009)
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Jamie M. Dettler, Robert Buscaglia, Vu H. Le, Edwin A. Lewis 
Volume 91, Issue 10, Pages (November 2006)
Robert W. Walters, Robert R. Jenq, Stephen B. Hall  Biophysical Journal 
Volume 86, Issue 4, Pages (April 2004)
Phosphatidylserine Inhibits and Calcium Promotes Model Membrane Fusion
Volume 102, Issue 3, Pages (February 2012)
Volume 86, Issue 4, Pages (April 2004)
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Volume 77, Issue 1, Pages (July 1999)
Interactions between Charged Polypeptides and Nonionic Surfactants
Gustav Persson, Per Thyberg, Jerker Widengren  Biophysical Journal 
Volume 105, Issue 3, Pages (August 2013)
Foldability of a Natural De Novo Evolved Protein
Evaluation of the Information Content in Infrared Spectra for Protein Secondary Structure Determination  Erik Goormaghtigh, Jean-Marie Ruysschaert, Vincent.
Volume 101, Issue 4, Pages (August 2011)
Volume 92, Issue 6, Pages (March 2007)
Volume 10, Issue 5, Pages (May 2002)
Volume 106, Issue 3, Pages (February 2014)
Refolding of SDS-Unfolded Proteins by Nonionic Surfactants
Volume 95, Issue 6, Pages (September 2008)
Actin Dynamics at the Living Cell Submembrane Imaged by Total Internal Reflection Fluorescence Photobleaching  Susan E. Sund, Daniel Axelrod  Biophysical.
Volume 93, Issue 12, Pages (December 2007)
Volume 95, Issue 7, Pages (October 2008)
Jiang Hong, Shangqin Xiong  Biophysical Journal 
Validating Solution Ensembles from Molecular Dynamics Simulation by Wide-Angle X- ray Scattering Data  Po-chia Chen, Jochen S. Hub  Biophysical Journal 
Volume 101, Issue 4, Pages (August 2011)
Lea-Laetitia Pontani, Ivane Jorjadze, Jasna Brujic  Biophysical Journal 
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Volume 89, Issue 1, Pages (July 2005)
Carlos Mattea, Johan Qvist, Bertil Halle  Biophysical Journal 
Volume 87, Issue 2, Pages (August 2004)
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Mei Wang, Maggie Law, Jean Duhamel, P. Chen  Biophysical Journal 
Volume 82, Issue 3, Pages (March 2002)
Two-Photon Thermal Bleaching of Single Fluorescent Molecules
Protein Self-Association Induced by Macromolecular Crowding: A Quantitative Analysis by Magnetic Relaxation Dispersion  Karim Snoussi, Bertil Halle  Biophysical.
Binding-Linked Protonation of a DNA Minor-Groove Agent
Volume 80, Issue 5, Pages (May 2001)
Arnoldus W.P. Vermeer, Willem Norde  Biophysical Journal 
Volume 93, Issue 10, Pages (November 2007)
Volume 110, Issue 11, Pages (June 2016)
Backbone Dynamics of the 18
Vesna Serrano, Wenge Liu, Stefan Franzen  Biophysical Journal 
Volume 96, Issue 12, Pages (June 2009)
Jochen Zimmer, Declan A. Doyle, J. Günter Grossmann 
Protein Structure and Hydration Probed by SANS and Osmotic Stress
Volume 86, Issue 2, Pages (February 2004)
Volume 96, Issue 3, Pages (February 2009)
Foldability of a Natural De Novo Evolved Protein
Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures  Wangchen Wang, Lin Yang,
Presentation transcript:

Adsorption of Frog Foam Nest Proteins at the Air-Water Interface Alan Cooper, Malcolm W. Kennedy, Rachel I. Fleming, Emma H. Wilson, Hortense Videler, David L. Wokosin, Tsueu-ju Su, Rebecca J. Green, Jian R. Lu  Biophysical Journal  Volume 88, Issue 3, Pages 2114-2125 (March 2005) DOI: 10.1529/biophysj.104.046268 Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 1 (a) Fluorescence emission spectrum of diluted foam fluid (0.1mg ml−1 protein) in water (λexc=290nm) with emission maximum (λem) ∼336nm, characteristic of tryptophan side chains in a nonpolar environment. Water baseline shown for comparison. (b) Far-UV circular dichroism (arbitrary units, raw data, and smoothed fit) spectrum of foam fluid (0.5mg ml−1 protein, 0.1-mm pathlength), typical of a protein mixture containing predominantly β-secondary structure. Biophysical Journal 2005 88, 2114-2125DOI: (10.1529/biophysj.104.046268) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 2 Comparison of surfactant properties of dilute frog foam proteins. (Upper panel) Side-on images illustrating the wetting of a hydrophobic surface (Nescofilm) by 50-μl drops of foam nest fluid, compared to water, and 1% w/v sodium dodecyl sulfate (SDS) solution. (Lower panel) Surface-tension data for serial dilutions of frog foam fluid in water, compared to lysozyme (in acetate buffer, pH 4.5) and BSA (in phosphate buffer, pH 7). (Note: the small differences in surface tension at very low concentrations reflect the different buffers used for each sample. Lysozyme was measured in acidic buffer to avoid the aggregation known to occur with this protein at neutral pH and above.) Biophysical Journal 2005 88, 2114-2125DOI: (10.1529/biophysj.104.046268) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 3 Variation of surface tension with time for aqueous solutions of foam proteins with concentrations (mg ml−1): 1×10−3 (○), 7×10−3 (●), 5×10−2 (▵), and 0.5 (×). The continuous lines are drawn to guide the eye. Biophysical Journal 2005 88, 2114-2125DOI: (10.1529/biophysj.104.046268) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 4 Fluorescence emission spectra of ANS (λexc=390nm) in nest foam and dilute foam fluid, compared to the parent spectrum in water alone. (The structure of ANS is inset.) Biophysical Journal 2005 88, 2114-2125DOI: (10.1529/biophysj.104.046268) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 5 Fluorescence volume imaging of ANS-treated foam: montage of 30 planar images, in 3-μm steps, starting from point of contact with the microscope slide (bottom right) progressing sequentially to a total depth of ∼90μm (top right). Each frame is ∼250μm2. λexc=810nm (200-fs pulses); λobs=440–500nm, z-series: 3-μm slices ; 2.8-μm pixels. Trapped air bubbles appear dark in these representations. Biophysical Journal 2005 88, 2114-2125DOI: (10.1529/biophysj.104.046268) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 6 Examples of two-photon excitation microscope images of bubbles in nest foam treated with ANS. The increased fluorescence intensities show congregation of fluorescently labeled protein(s) at the air-water interface of individual bubbles within the foam. Biophysical Journal 2005 88, 2114-2125DOI: (10.1529/biophysj.104.046268) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 7 The neutron reflectivity profiles from NRW solutions with protein concentration (mg ml−1) of 1×10−3 (○), 7×10−3 (●), 5×10−2 (▵), and 0.5 (×). The continuous lines are the best fits with structural parameters listed in Table 1. Biophysical Journal 2005 88, 2114-2125DOI: (10.1529/biophysj.104.046268) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 8 Plots of protein partial structure factors versus momentum transfer (κ) at bulk protein concentrations (mg ml−1) of 1×10−3 (○), 7×10−3 (●), 5×10−2 (▵), and 0.5 (×). The continuous lines are the best fits calculated using a single uniform layer model with structural parameters given in Table 1. Biophysical Journal 2005 88, 2114-2125DOI: (10.1529/biophysj.104.046268) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 9 Neutron reflectivity profiles measured in D2O solutions with bulk protein concentrations (mg ml−1) of 1×10−3 (○), 7×10−3 (●), 5×10−2 (▵), and 0.5 (×). The continuous lines represent the best fits using multilayer models and structural parameters listed in Table 4. Biophysical Journal 2005 88, 2114-2125DOI: (10.1529/biophysj.104.046268) Copyright © 2005 The Biophysical Society Terms and Conditions