©G Dear2008 – Not to be sold/Free to use

Slides:



Advertisements
Similar presentations
Notes Over 10.2 Graphing an Equation of a Parabola Standard Equation of a Parabola (Vertex at Origin) focus directrix.
Advertisements

Press Ctrl-A ©G Dear 2009 – Not to be sold/Free to use Calculating Tax Stage 6 - Year 11 General Mathematics Preliminary.
Unit 1 – Conic Sections Section 1.3 – The Parabola Calculator Required Vertex: (h, k) Opens Left/RightOpens Up/Down Vertex: (h, k) Focus: Directrix: Axis.
1 One Steppers Press Ctrl-A G Dear ©2009 – Not to be sold/Free to use Stage 4 Year 7.
1 Press Ctrl-A ©G Dear 2008 – Not to be sold/Free to use Intro Stage 6 - Year 11 General Mathematics Preliminary.
Parabola  The set of all points that are equidistant from a given point (focus) and a given line (directrix).
Section 10.2 The Parabola. Find an equation of the parabola with vertex at (0, 0) and focus at (3, 0). Graph the equation. Figure 5.
1 Press Ctrl-A ©G Dear 2010 – Not to be sold/Free to use IntersectingLines Stage 6 - Year 11 Applied Mathematic (Preliminary Extension 1)
G Dear ©2009 – Not to be sold/Free to use
Section 10.2 – The Parabola Opens Left/Right Opens Up/Down
Writing Equations of Parabolas
10.5 Parabolas Objective: Use and determine the standard and general forms of the equations of a parabolas. Graph parabolas.
©G Dear 2010 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
Parabola – Locus By Mr Porter.
10.1 Parabolas.
Parabola – Locus II By Mr Porter.
©G Dear2008 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
©G Dear2008 – Not to be sold/Free to use
©G Dear2008 – Not to be sold/Free to use
©2009 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
Find an equation for the parabola, that has its vertex at the origin and directrix {image} Choose the correct answer from the following. y 2 = 2x y 2 =
Today in Pre-Calculus Go over homework Chapter 8 – need a calculator
©G Dear2008 – Not to be sold/Free to use
G Dear ©2009 – Not to be sold/Free to use
G Dear ©2009 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©2009 G Dear – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
(Gradient/Intercept)
The Parabola.
©G Dear 2010 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©G Dear2008 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
©G Dear 2010 – Not to be sold/Free to use
©G Dear2008 – Not to be sold/Free to use
Reducible to Quadratics
Solving by Factorising
©G Dear 2008 – Not to be sold/Free to use
©G Dear 2008 – Not to be sold/Free to use
Write an equation of a parabola with a vertex at the origin and a focus at (–2, 0). [Default] [MC Any] [MC All]
©G Dear 2009 – Not to be sold/Free to use
G Dear ©2010 – Not to be sold/Free to use
©G Dear 2008 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
©G Dear 2008 – Not to be sold/Free to use
©G Dear 2008 – Not to be sold/Free to use
G Dear ©2009 – Not to be sold/Free to use
©G Dear 2008 – Not to be sold/Free to use
Bell ringer 1. What is standard form of a quadratic?
5.1 Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
Warm-up: 1) Find the standard form of the equation of the parabola given: the vertex is (3, 1) and focus is (5, 1) 2) Graph a sketch of (x – 3)2 = 16y.
©G Dear2008 – Not to be sold/Free to use
5.1 Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
Parabolas a set of points whose distance to a fixed point (focus) equals it’s distance to a fixed line (directrix) A Parabola is -
©G Dear 2010 – Not to be sold/Free to use
©G Dear 2009 – Not to be sold/Free to use
G Dear ©2009 – Not to be sold/Free to use
©G Dear 2008 – Not to be sold/Free to use
Presentation transcript:

©G Dear2008 – Not to be sold/Free to use Mathematic (Preliminary) Locus and the Parabola Harder Parabolas Stage 6 - Year 11 Press Ctrl-A ©G Dear2008 – Not to be sold/Free to use

Parabola as a locus Vertex is at (h, k) Focus is at (h, k+a) The parabola, vertex (h, k) and focal length a, has the equation (x – h)2 = 4a(y – k). Vertex is at (h, k) x = h (h, k + a) Focus is at (h, k+a) a Focal Length a (h, k) Axis is x = h Directrix is y = k-a y = k -a

Parabola as a locus Find the equation of the parabola with focus (2,3) and with directrix y =-7. a =(3 + 7)/2 = 5 Vertex = (2,3-5) = (2,-2) = (h, k) (2, 3) a=5 (x – h)2 = 4a(y – k) (x – 2)2 = 4(5)(y – -2) (2, -2) x2 – 4x + 4 = 20 (y + 2) x2 – 4x + 4 = 20y + 40 y -7 x2–4x-20y-36=0