SCH-CN H Si CN CN Si H PPT:

Slides:



Advertisements
Similar presentations
1. A 5. 1 g piece of gold jewelry at a temperature of 100
Advertisements

Procedure for manipulating / analysing Dynamic NMR (DNMR) data (example: DNMR data for the compound 1-Silyl-1-Silacyclohexane, C5H10SiHSiH (schsih3) By.
SCH-tBu; working procedure; update:
Chemistry 107 Exam 7-9 Good Luck!.
1) Which of the following is probably true for a solid solute with a highly endothermic heat of solution when dissolved in water? a. The solid has a low.
HCl, dep. Calc. E0,V10,V11
Perfect Square Trinomials. Form for Perfect Square Trinomials: a 2 + 2ab + b 2 OR a 2 – 2ab + b 2.
Lecture 6 Activity Scales and Activity Corrections Learn how to make activity corrections Free ion activity coefficients Debye-Huckel Equations Mean Salt.
Enthalpy EQ: How do you predict the sign of delta H?
X = =2.67.
Thermodynamics Chapter 5 Thermochemistry. Thermodynamics – study of energy and its transformation. Thermochemistry – relationship of energy changes in.
Chapter 10 - Review States of Matter Milbank High School.
Chapter 3.2 Vocabulary International System of Units (SI) Meter Liter Kilogram Gram.
Factoring Trinomials with a > 1 Factor trinomials when the coefficient of x 2 is a number greater than 1. ax 2 + bx + c.
Factoring Checklist Works every time!. 1. Check to see if there is a GCF. If so, factor it out. 3xy² + 12xy.
33.1 Temperature Dependence of Gibbs’ Free Energy Methods of evaluating the temperature dependence of the Gibbs’ free energy can be developed by beginning.
THERMOCHEMISTRY CP Unit 9 Chapter 17.
Chapter 13 Equilibrium. Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time –The concentration.
Chapter 10 The Mole. The atomic mass is found by checking the periodic table. The atomic mass is the number of grams of an element that is numerically.
SCH-X; X =F, Cl,Br,I Summary: K(eq->ax) (vs T) ax) >(vs T)  G # (eq->#) references.
6-3:Calculating Equilibrium Constants: The actual value of K eq is found experimentally. The individual concentrations of all the reactants is calculated,
Factoring – Day 4 Factoring Trinomials Objective: To factor trinomials whose quadratic coefficient is 1.
Gaseous Chemical Equilibrium. The Dynamic Nature of Equilibrium A. What is equilibrium? a state of balance; no net change in a dynamic process.
Standard Enthalpy of Formation EQ: Why does the  Hfº for a free element equal zero?
SCH-Br Summary of spectra vs T, (slides: 3-7 (“hot”); 10-11(“cold”)) calc. vs. exp. chemical shift differences for ax.-eq. (C2-C6, C3-C5, C4) (slides 11)
 Start with the coefficient of 5x 3 y 2.  Cube your result.  Add the digits of your answer together.  Take the cube root of your answer.  Add the.
Molar Mass.
Factor It’s a big deal!.
FACTORING TRINOMIALS with leading coefficient
Factoring Polynomial Functions
Sum and Product of Roots
Unit 7: The Mole.
SUPA CHEMISTRY MRS. PAPARELLA SPRING 2016
Lesson 7.6 EQ: How do you factor a polynomial when leading coefficient is not 1? Topic/Objective: To factor trinomials in the form ax2 +bx + c   Factor.
Acc SG Semi-Answer Activation Energy: 50 kJ, Exo, change in H = -75 kJ
عمل الطالبة : هايدى محمد عبد المنعم حسين
CH 19: Thermodynamics.
Metabolism Energy of Life.
Chapter 3 Matter and Energy
Molar Conversions.
EEV, DI, S3,
Thermodynamics!.
Equilibrium Part 2.
SCH-Cl Summary of spectra vs T, (slides: 3-7 (“hot”); (“cold”))
GeCH-Me Summary of spectra vs T, DNMR analysis and figure for publication PPT:
Multiplicative Inverses of Matrices and Matrix Equations
H(0), one-color, VMI and slicing images
Equilibrium Expressions mass-action expression
Factor into pairs like in “T” Find the pair whose sum is “b”
Factor into pairs like in “T” Find the pair whose sum is “b”
Chapter 15 Chemical Equilibrium
HBr, 3S-, J´= 8 & V(m+9) Updated:
SCH-Cl Summary of spectra vs T, (slides: 3-7 (“hot”); (“cold”))
CH 19: Thermodynamics.
The student will be able to:
T [K] Ge Me Ge Me Me.
Mean Absolute Deviation
Molar Conversions.
Equilibrium Part 2.
Write the balanced reaction equation for this process.
SCH-I Summary of spectra vs T, (slides: 3-7 (“hot”); 9-10(“cold”))
Mean Absolute Deviation
N-METHYL INVERSION IN PSEUDO-PELLETIERINE
Free Energy and the Equilibrium Constant
Practice Problems ax2 + bx + c
Mean Absolute Deviation
CH-CN PPT: PXP:
→ Ba2+(aq)+ SCN-(aq) + 2NH3(aq) + 10 H20(l)
Step 1: Put the equations in Standard Form. Standard Form: Ax + By = C
Fig. 2 Mean field results. Mean field results. (A) Solutions P(x) to Eq. 4 for a range of T and wc = (B) Modulus ∣pk∣ of order parameters versus.
Presentation transcript:

SCH-CN H Si CN CN Si H PPT: https://notendur.hi.is/agust/rannsoknir/SCH/Jan13/PPT-160113.ppt PXP: https://notendur.hi.is/agust/rannsoknir/SCH/Jan13/CN-150113.pxp https://notendur.hi.is/agust/rannsoknir/SCH/Jan13/CN-150113a.pxp https://notendur.hi.is/agust/rannsoknir/SCH/Jan13/CN-150113b.pxp https://notendur.hi.is/~agust/rannsoknir/SCH/Jan13/PXP-170113.pxp XLS: https://notendur.hi.is/agust/rannsoknir/SCH/Jan13/SCH-CN-Sp.%20vs%20T-150113.xls H Si CN CN Si H

C3, C5 TM 170 TC 158.6453 155 145.3685 150 141.018 145 136.6562 140 132.2453 136 128.6521 131 124.0383 128 121.1835 125 118.2479 122 115.2172 119 112.0763 117 109.9132 eq ax ppm https://notendur.hi.is/agust/rannsoknir/SCH/Jan13/CN-150113a.pxp

Exp. Calc. T(K) keq,ax(s-1) 159 145 7100 141 3600 137 1600 132 910 129 580 124 270 121 180 118 120 115 86 112 57 110 50 Dd/ppm https://notendur.hi.is/agust/rannsoknir/SCH/Jan13/CN-150113b.pxp

<T>(ca. coalescence point) 120 K K(eq->ax) 0,550387597 - parameter value unit R 8,315 J K-1 mol-1 <T>(ca. coalescence point) 120 K K(eq->ax) 0,550387597 - %a(e) (low field; Cl eq) 64,5   %b(a) (high field: Cl3 ax) 35,5 DG(eq->ax) 595,8188358 J mol-1 0,595818836 kJ mol-1 0,142400702 kcal mol-1 conversion factor 0,239 kcal/kJ kB 1,381E-23 J K-1 h 6,626E-34 J s DG# eq (eq->#; see below) G ax Si CN Si CN https://notendur.hi.is/agust/rannsoknir/SCH/Jan13/SCH-CN-Sp.%20vs%20T-150113.xls

Coefficient values ± one standard deviation a =4.2888 ± 0.202 Tc k(eq->ax) k(ax->eq) sum check 109,91319 49,7 90,3 140 112,07631 57,155 103,845 161 115,21722 85,91 156,09 242 118,24791 122,12 221,88 344 121,18354 178,565 324,435 503 124,03831 270,865 492,135 763 128,65213 582,555 1058,445 1641 132,24532 905,96 1646,04 2552 136,65616 1576,555 2864,445 4441 141,01798 3616,74 6571,26 10188 145,36847 7092,9 12887,1 19980 158,64527 2484996 4514993,6 7E+06 kcal mol-1 DG#(eq->#) 5,363286191 5,44204887 5,507576707 5,575902301 5,628734365 5,664363981 5,688605288 5,738675943 5,788537779 5,749407883 5,740986019 4,445711097 DG# (eq->#) Coefficient values ± one standard deviation a =4.2888 ± 0.202 b =0.010625 ± 0.0016 Average: 5,626193211 +/- 0,111992505 DG# = DH# -TDS# => DH# = 4.29 kcal mol-1; DS# = + 0.010625 kcal mol-1K-1 / +10.6 cal mol-1K-1 Tcorr https://notendur.hi.is/~agust/rannsoknir/SCH/Jan13/PXP-170113.pxp

Analysis results: K (eq -> ax): + 0.55 DG(eq ->ax): + 0.14 kcal /mol (for T = 120 K) Average DG# (eq->#): 5.6 +/- 0.1 kcal/mol for temperature range 110 – 145 K