Distributive Property Objective - To use the distributive property to simplify numerical and variable expressions. Distributive Property or Order of Operations Distributive Property It works! Why use the distributive property?
Simplify using the distributive property. 1) 4) 2) 5) 3) 6)
Use the distributive property to write an equivalent expression. Then simplify both to show they have the same value. 1) same 2) same 3) same
Use the distributive property to simplify. 1) 3(x - 7) 6) x(a - m) 3x - 21 ax - mx 2) 2(a - 4) 7) -4(-3 - r) 2a - 8 12 + 4r 3) -7(8 - m) 8) 2(x - 8) -56 + 7m 2x - 16 4) 3(4 - a) 9) -5(2m - 3) 12 - 3a -10m + 15 5) (3 - k)5 10) (6 - 2y)-3y 15 - 5k 6 - 5y
Factor the following. 1) 4) 2) 5) 3) 6)
Simplify the expression. 1) 3) 2) 4)
Simplify each variable expression. 1) 7(x - 4) + 2x 4) 3(b - 2) + 6b 7x - 28 + 2x 3b - 6 + 6b 9x - 28 9b - 6 2) 5x + 3(x - 1) 5) -2(3m - 1) - 4m 5x + 3x - 3 -6m + 2 - 4m 8x - 3 -10m + 2 3) a - 2(4 - a ) - 1 6) 3(k - m) - 5(k + 2m) a - 8 + 2a - 1 3k - 3m -5k - 10m 3a - 9 -2k - 13m
Find the perimeter of the figures below in terms of x. 1) 2)