Volume 12, Issue 9, Pages (September 2015)

Slides:



Advertisements
Similar presentations
Volume 12, Issue 10, Pages (October 2005)
Advertisements

Volume 124, Issue 6, Pages (March 2006)
Volume 121, Issue 4, Pages (May 2005)
Volume 63, Issue 2, Pages (July 2016)
Ping Wang, Katelyn A. Doxtader, Yunsun Nam  Molecular Cell 
Volume 62, Issue 4, Pages (May 2016)
Volume 40, Issue 6, Pages (December 2010)
Volume 24, Issue 7, Pages (July 2016)
Volume 124, Issue 2, Pages (January 2006)
Volume 18, Issue 1, Pages (April 2005)
Volume 21, Issue 9, Pages (September 2013)
Volume 63, Issue 6, Pages (September 2016)
Volume 23, Issue 1, Pages (July 2006)
Structural Basis for the Specific Recognition of Methylated Histone H3 Lysine 4 by the WD-40 Protein WDR5  Zhifu Han, Lan Guo, Huayi Wang, Yue Shen, Xing.
Volume 64, Issue 3, Pages (November 2016)
Volume 24, Issue 12, Pages (December 2016)
Yvonne Groemping, Karine Lapouge, Stephen J. Smerdon, Katrin Rittinger 
Volume 24, Issue 8, Pages (August 2016)
Ajaybabu V. Pobbati, Siew Wee Chan, Ian Lee, Haiwei Song, Wanjin Hong 
Volume 36, Issue 4, Pages (November 2009)
Volume 3, Issue 5, Pages (May 2013)
Crystal Structure of Tetrameric Arabidopsis MYC2 Reveals the Mechanism of Enhanced Interaction with DNA  Teng-fei Lian, Yong-ping Xu, Lan-fen Li, Xiao-Dong.
Crystal Structure of the Rab9A-RUTBC2 RBD Complex Reveals the Molecular Basis for the Binding Specificity of Rab9A with RUTBC2  Zhe Zhang, Shanshan Wang,
Volume 25, Issue 10, Pages e3 (October 2017)
Volume 18, Issue 11, Pages (November 2010)
Volume 13, Issue 4, Pages (October 2015)
Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity
Volume 13, Issue 9, Pages (December 2015)
Charlotte Hodson, Andrew Purkiss, Jennifer Anne Miles, Helen Walden 
Volume 108, Issue 1, Pages (January 2002)
Solution and Crystal Structures of a Sugar Binding Site Mutant of Cyanovirin-N: No Evidence of Domain Swapping  Elena Matei, William Furey, Angela M.
Volume 21, Issue 6, Pages (March 2006)
Volume 17, Issue 4, Pages (October 2016)
Volume 20, Issue 1, Pages 9-19 (October 2005)
Volume 20, Issue 12, Pages (December 2012)
Volume 19, Issue 12, Pages (December 2011)
Volume 5, Issue 5, Pages (December 2013)
Volume 16, Issue 12, Pages (September 2016)
Structural Basis for Protein Recognition by B30.2/SPRY Domains
Volume 21, Issue 1, Pages (October 2017)
Volume 26, Issue 2, Pages e4 (February 2018)
Structural Basis of Homology-Directed DNA Repair Mediated by RAD52
Volume 13, Issue 4, Pages (October 2015)
Structural Basis of EZH2 Recognition by EED
Volume 24, Issue 8, Pages (August 2016)
Volume 24, Issue 12, Pages e5 (December 2017)
Volume 25, Issue 11, Pages e3 (November 2017)
Volume 16, Issue 12, Pages (September 2016)
Volume 25, Issue 6, Pages e5 (June 2017)
Volume 23, Issue 9, Pages (September 2015)
Volume 13, Issue 7, Pages (July 2005)
Structural Basis for Recognition of Diubiquitins by NEMO
Volume 52, Issue 3, Pages (November 2013)
Volume 26, Issue 1, Pages (April 2007)
Volume 55, Issue 3, Pages (August 2014)
Volume 20, Issue 1, Pages (January 2012)
Volume 24, Issue 9, Pages (September 2016)
Volume 26, Issue 2, Pages e3 (February 2018)
Crystal Structure and Substrate Specificity of PTPN12
Volume 24, Issue 7, Pages (July 2016)
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
Hui Yang, Dinshaw J. Patel  Molecular Cell 
Volume 11, Issue 1, Pages 1-12 (April 2015)
Volume 25, Issue 12, Pages e5 (December 2018)
Volume 25, Issue 11, Pages e3 (November 2017)
Volume 15, Issue 2, Pages (February 2007)
Volume 21, Issue 1, Pages (October 2017)
Structural Basis of SOSS1 Complex Assembly and Recognition of ssDNA
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
Volume 15, Issue 6, Pages (September 2004)
Presentation transcript:

Volume 12, Issue 9, Pages 1400-1406 (September 2015) An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1  Zhi-Min Zhang, Scott B. Rothbart, David F. Allison, Qian Cai, Joseph S. Harrison, Lin Li, Yinsheng Wang, Brian D. Strahl, Gang Greg Wang, Jikui Song  Cell Reports  Volume 12, Issue 9, Pages 1400-1406 (September 2015) DOI: 10.1016/j.celrep.2015.07.046 Copyright © 2015 The Authors Terms and Conditions

Cell Reports 2015 12, 1400-1406DOI: (10.1016/j.celrep.2015.07.046) Copyright © 2015 The Authors Terms and Conditions

Figure 1 Identification of the UHRF1 and USP7 Interaction Domains (A) Domain architectures of UHRF1 and USP7. The UHRF1 fragments used for biochemical analysis are labeled with residue numbers. TRAF, tumor necrosis factor receptor-associated factor. (B and C) ITC binding curves for USP7 UBL1-2 over UHRF1SRA-RING (B) and UHRF1647–678 (C). See also Figure S1. Cell Reports 2015 12, 1400-1406DOI: (10.1016/j.celrep.2015.07.046) Copyright © 2015 The Authors Terms and Conditions

Figure 2 Structural Basis of the UHRF1647–678-USP7 UBL1–3 Complex (A) Ribbon representation of the UHRF1647–678-USP7 UBL1–3 complex, with USP7 UBL1, UBL2, and UBL3 colored pink, light blue, and silver, respectively. The UHRF1647–678 fragment is shown in stick representation. (B) Electrostatic surface representation of the UHRF1647–678-UHRF1 UBL1–3 complex. For clarity, the USP7 UBL3 domain is not shown. (C) Hydrogen-bonding interactions (dashed lines) between USP7 and UHRF1. The water molecule is shown as a sphere labeled “W.” (D) Close-up view of the UHRF1 K657- and K659-associated intermolecular interactions. See also Table S1. Cell Reports 2015 12, 1400-1406DOI: (10.1016/j.celrep.2015.07.046) Copyright © 2015 The Authors Terms and Conditions

Figure 3 Biochemical Analysis of the UHRF1-USP7 Interaction (A) ITC and mutational analysis of the UHRF1647–687-USP7 UBL1-2 interaction. The mutations include USP7 E736A, UHRF1 K659E, K657Q/K659Q, and K657E/K659E. (B) Sequence alignment of the USP7-binding motif of human UHRF1 with its mouse (NP95), zebrafish (zUHRF1), and Xenopus laevis (xlUHRF1) orthologs. Identical residues are colored red and highlighted in yellow. (C) Immunoprecipitation (IP) analysis of the interaction between full-length Flag-tagged UHRF1 and HA-tagged USP7. (D) In vitro ubiquitination assay of wild-type and K659E UHRF1 in the presence of HA-tagged ubiquitin and USP7. The ubiquitination level (upper panel) and total amount of UHRF1 (lower panel) were analyzed by anti-HA western blot and SYPRO staining, respectively. See also Figure S4 and Table S2. Cell Reports 2015 12, 1400-1406DOI: (10.1016/j.celrep.2015.07.046) Copyright © 2015 The Authors Terms and Conditions

Figure 4 UHRF1-USP7 Interaction Affects UHRF1 Intramolecular Regulation and Chromatin Association (A) Sequence of a selected UHRF1 fragment, with the USP7-binding site and PBR sequence labeled. (B–D) Overlaid 2D 1H,15N-HSQC spectra highlight the chemical shift changes of selected residues in the UHRF1 TTD. The spectra were collected for the UHRF1 TTD free (black) and in the presence of the UHRF1 PBR (red) or UHRF1 PBR and USP7 UBL1-2 (blue). The arrows with dashed and solid lines mark the chemical shift changes of selected residues under different conditions. (E) ITC binding curves for USP7 UBL1-2 over UHRF1SRA-RING (black) or UHRF1TTD-RING (red). (F) Chromatin association assay of Flag-tagged WT and K657E/K659E UHRF1 from asynchronously growing HeLa cells. Mock indicates no DNA control. (G) Model for USP7 regulation. The USP7 interaction allosterically regulates the conformational states of UHRF1 and affects its ubiquitination and chromatin binding. See also Figures S2 and S3 and Table S2. Cell Reports 2015 12, 1400-1406DOI: (10.1016/j.celrep.2015.07.046) Copyright © 2015 The Authors Terms and Conditions