Observational Constraints on Viable f(R) Gravity Models

Slides:



Advertisements
Similar presentations
Observational constraints on primordial perturbations Antony Lewis CITA, Toronto
Advertisements

Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Benasque 2012 Luca Amendola University of Heidelberg in collaboration with Martin Kunz, Mariele Motta, Ippocratis Saltas, Ignacy Sawicki Horndeski Lagrangian:
Eloisa Menegoni ICRA and INFN, University of Rome “La Sapienza” Cosmological constraints on variations of fundamental constants Miami2010, Fort Lauderdale,
Dark Energy as the Gravitational Feedback of Mass-Varying Dark Matter André Füzfa* F.N.R.S. Postdoctoral Researcher GAMASCO, University of Namur, Belgium.
Scalar-tensor Correspondence with f(T) Theory Yi-Peng Wu 吳亦鵬 Department of Physics, National Tsing Hua University 1/4/ Cross Strait Meeting on.
Yi-Peng Wu Department of Physics, National Tsing Hua University May Chongquing 2012 Cross-Strait Meeting on Particle Physics and Cosmology Collaborate.
L. Perivolaropoulos Department of Physics University of Ioannina Open page S. Fay, S. Nesseris, L.P. gr-qc/
P ROBING SIGNATURES OF MODIFIED GRAVITY MODELS OF DARK ENERGY Shinji Tsujikawa (Tokyo University of Science)
Curvature Perturbations from a Non-minimally Coupled Vector Boson Field Mindaugas Karčiauskas work done with Konstantinos Dimopoulos Mindaugas Karčiauskas.
Álvaro de la Cruz-Dombriz Theoretical Physics Department Complutense University of Madrid in collaboration with Antonio L. Maroto & Antonio Dobado Different.
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
Dark energy II : Models of dark energy Shinji Tsujikawa (Tokyo University of Science)
Physical Constraints on Gauss-Bonnet Dark Energy Cosmologies Ishwaree Neupane University of Canterbury, NZ University of Canterbury, NZ DARK 2007, Sydney.
Cosmic Microwave Radiation Anisotropies in brane worlds K. Koyama astro-ph/ K. Koyama PRD (2002) Kazuya Koyama Tokyo University.
Falsifying Paradigms for Cosmic Acceleration Michael Mortonson Kavli Institute for Cosmological Physics University of Chicago January 22, 2009.
COSMO 2006, Lake Tahoe 9/28/2006 Cuscuton Cosmology: Cuscuton Cosmology: Dark Energy meets Modified Gravity Niayesh Afshordi Institute for Theory and Computation.
Coupled Dark Energy and Dark Matter from dilatation symmetry.
Lecture 1: Basics of dark energy Shinji Tsujikawa (Tokyo University of Science) ``Welcome to the dark side of the world.”
A model of accelerating dark energy in decelerating gravity Matts Roos University of Helsinki Department of Physical Sciences and Department of Astronomy.
Near-Horizon Solution to DGP Perturbations Ignacy Sawicki, Yong-Seon Song, Wayne Hu University of Chicago astro-ph/ astro-ph/
1 f(R) Gravity and its relation to the interaction between DE and DM Bin Wang Shanghai Jiao Tong University.
Effective field theory approach to modified gravity with applications to inflation and dark energy Shinji Tsujikawa Hot Topics in General Relativity And.
Chaplygin gas in decelerating DGP gravity Matts Roos University of Helsinki Department of Physics and and Department of Astronomy 43rd Rencontres de Moriond,
Structure formation in dark energy cosmology La Magia, April 2005.
1 Dynamical Effects of Cosmological Constant Antigravity Μ. Αξενίδης, Λ. Περιβολαρόπουλος, Ε. Φλωράτος Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών ‘Δημόκριτος’
Modified (dark) gravity Roy Maartens, Portsmouth or Dark Gravity?
BRANEWORLD COSMOLOGICAL PERTURBATIONS
Jochen Weller Benasque August, 2006 Constraining Inverse Curvature Gravity with Supernovae O. Mena, J. Santiago and JW PRL, 96, , 2006.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Roberto Dale 1,3 & Diego Sáez 2,4 1 Departament d’estadística, matemàtiques i informàtica, Universitat Miguel Hernández, 03202, Elx, Alacant, Espanya 2.
Dark Energy and Modified Gravity Shinji Tsujikawa (Gunma National College of Technology ) Collaborations with L. Amendola, S. Capozziello, R. Gannouji,
Observational test of modified gravity models with future imaging surveys Kazuhiro Yamamoto (Hiroshima U.) Edinburgh Oct K.Y. , Bassett, Nichol,
Cosmological structure formation and dark energy Carlo Baccigalupi Heidelberg, May 31, 2005.
Michael Doran Institute for Theoretical Physics Universität Heidelberg Time Evolution of Dark Energy (if any …)
Cosmological structure formation and dark energy Carlo Baccigalupi Madrid, November 15, 2005.
2010/09/27 Tokyo Univ. f(R) Modified Gravity Cosmological & Solar-System Tests Je-An Gu 顧哲安 臺灣大學梁次震宇宙學與粒子天文物理學研究中心 Leung Center for Cosmology.
Marco Bruni, ICG, University of Portsmouth & Dipartimento di Fisica, Roma ``Tor Vergata” Paris 8/12/05 Dark energy from a quadratic equation of state Marco.
ERE 2008September 15-19, Spanish Relativity Meeting 2008, Salamanca, September (2008) Avoiding the DARK ENERGY coincidence problem with a COSMIC.
Jochen Weller XLI Recontres de Moriond March, 18-25, 2006 Constraining Inverse Curvature Gravity with Supernovae O. Mena, J. Santiago and JW PRL, 96, ,
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
Inflation coupled to the GB correction Zong-Kuan Guo Hangzhou workshop on gravitation and cosmology Sep 4, 2014.
“Planck 2009” conference Padova May 2009 Facing Dark Energy in SUGRA Collaboration with C. van de Bruck, A. Davis and J. Martin.
Inflation in modified gravitational theories Shinji Tsujikawa Tokyo University of Science (TUS) with Antonio De Felice (TUS), Joseph Elliston, Reza Tavakol.
Do consistent modified gravity models mimic General Relativity? S. Appleby, R. Battye. Talk based on arXiv:
Cosmology in Eddington- inspired Born-Infeld gravity Hyeong-Chan Kim Korea National University of Transportation 19 Feb 2013 The Ocean Suites Jeju, Asia.
THE DARK SIDE OF THE UNIVERSE Amna Ali Saha Institute of Nuclear Physics Kolkata, India 9/07/2012 LPNHE,PARIS.
Cheng Zhao Supervisor: Charling Tao
@ 2012 Miniworkshop for String theory and Cosmology Dec. 01st Seokcheon Lee (KIAS)
ETSU Astrophysics 3415: “The Concordance Model in Cosmology: Should We Believe It?…” Martin Hendry Nov 2005 AIM:To review the current status of cosmological.
Theoretical Perspectives on Cosmology and Cosmic Dawn Scott Dodelson: Science Futures in the 2020s.
The HORIZON Quintessential Simulations A.Füzfa 1,2, J.-M. Alimi 2, V. Boucher 3, F. Roy 2 1 Chargé de recherches F.N.R.S., University of Namur, Belgium.
Observational constraint on the varying speed of light theory Speaker: Qi Jing-Zhao Advisor: Prof. Liu Wen-Biao Department of Physics, Beijing Normal University.
Spherical Collapse and the Mass Function – Chameleon Dark Energy Stephen Appleby, APCTP-TUS dark energy workshop 5 th June, 2014 M. Kopp, S.A.A, I. Achitouv,
Observational Constraints on the Running Vacuum Model
The influence of Dark Energy on the Large Scale Structure Formation
J. Tang, J. Weller, A. Zablocki
Probing the Coupling between Dark Components of the Universe
Recent status of dark energy and beyond
Inhomogeneities in Loop Cosmology Mikhail Kagan Institute for Gravitational Physics and Geometry, Pennsylvania State University in collaboration with.
Inflation with a Gauss-Bonnet coupling
Searching for modified growth patterns with tomographic surveys
Exploring the systematic uncertainties of SNe Ia
2012 International Workshop on String Theory and Cosmology
Notes on non-minimally derivative coupling
Quantum Spacetime and Cosmic Inflation
Probing the Dark Sector
Ignacy Sawicki CEICO, Institute of Physics, Prague
General, single field Inflation
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Presentation transcript:

Observational Constraints on Viable f(R) Gravity Models Yow-Chun Chen (National Tsing-Hua University) Collaborators: Chao-Qiang Geng, Chung-Chi Lee

Outline f(R) gravity Viable f(R) gravity models Observational Constraints on Viable f(R) Gravity Models

f(R) gravity In f(R) gravity, the Ricci scalar R in the Einstein-Hilbert action is extended to an arbitrary function f(R). Modified Einstein-Hilbert action: 𝑆=∫ ⅆ 4 𝑥 −𝑔 𝑓 𝑅 16𝜋𝐺 + 𝑆 𝑚 Taking variation of the action with resect to 𝑔 𝜇𝜈 , we get the modified Einstein equation: 𝑓 𝑅 𝐺 𝜇𝜈 = κ 2 𝑇 𝜇𝜈 𝑚 − 1 2 𝑔 𝑢𝜈 𝑓 𝑅 𝑅−𝑓 + 𝛻 𝜇 𝛻 𝜈 𝑓 𝑅 − 𝑔 𝑢𝜈 □ 𝑓 𝑅 , where 𝑓 𝑅 ≡ ⅆ𝑓 𝑅 ⅆ𝑅 and 𝐺 𝜇𝜈 = 𝑅 𝜇𝜈 − 1 2 𝑔 𝜇𝑣 𝑅

Conditions for viable f(R) gravity model 1. Possess positive effective gravitational constants and exhibit stable cosmological perturbations: ⅆ𝑓 𝑅 ⅆ𝑅 >0 and ⅆ 2 𝑓 𝑅 ⅆ 𝑅 2 >0 for 𝑅≥ 𝑅 0 2. Asymptotic behavior to the 𝛬CDM model in the large curvature regime: 𝑓 𝑅 →𝑅−2𝛬 for 𝑅≥ 𝑅 0 3. Presence Stability of the late-time de Sitter point 4. Passing the local system constraints

Viable f(R) Gravity Models Exponential gravity model: 𝑓 𝑅 =𝑅−𝛽 𝑅 𝑐ℎ 𝐸 1− ⅇ −𝑅∕ 𝑅 𝑐ℎ 𝐸 Tsujikawa model: 𝑓 𝑅 =𝑅−𝜇 𝑅 𝑐ℎ 𝑇 tanh 𝑅 𝑅 𝑐ℎ 𝑇 Starobinsky model: 𝑓 𝑅 =𝑅−𝜆 𝑅 𝑐ℎ 𝑆 1− 1+ 𝑅 2 𝑅 𝑐ℎ 𝑆 2 −𝑛 Hu-Sawicki model: 𝑓 𝑅 =𝑅− 𝑅 𝑐ℎ 𝐻𝑆 𝑐 1 𝑅∕ 𝑅 𝑐ℎ 𝐻𝑆 𝑝 𝑐 2 𝑅∕ 𝑅 𝑐ℎ 𝐻𝑆 𝑝 +1

Background Evolution By the continuity equation: 𝜌 𝐷𝐸 +3𝐻 1+ 𝑤 𝐷𝐸 𝜌 𝐷𝐸 =0 we can derive the equation of state for dark energy: 𝑤 𝐷𝐸 ≡ 𝑃 𝐷𝐸 𝜌 𝐷𝐸 =−1− 1 3 1 𝑦 𝐻 ⅆ 𝑦 𝐻 ⅆ ln 𝑎 where the introduced variables: 𝑦 𝐻 ≡ 𝜌 𝐷𝐸 𝜌 𝑚 0 = 𝐻 2 𝑚 2 − 𝑎 −3 −𝜒 𝑎 −4 , 𝑦 𝑅 = 𝑅 𝑚 2 −3 𝑎 −3 with: 𝑚 2 ≡ 𝜅 2 𝜌 𝑚 0 3 , 𝜒≡ 𝜌 𝑟 0 𝜌 𝑚 0

Observational data Code utilized: CAMB and MGCAMB CosmoMC: Markov-Chain Monte-Carlo Data utilized: BAO (baryon acoustic oscillations) data Planck 2015 likelihoods SNLS (Supernova Legacy Survey) data

Observational Constraints on Viable f(R) Gravity Models 𝛬CDM model Exponential Tsujikawa

Observational Constraints on Viable f(R) Gravity Models Starobinsky (n = 1) Starobinsky (n = 2)

Observational Constraints on Viable f(R) Gravity Models Hu-Sawicki (p = 2) Hu-Sawicki (p = 4)

Observational Constraints on Viable f(R) Gravity Models 𝛬CDM background Allowed regions:1 𝜎 (68%) confidence level for model parameter 2 𝜎 (95%) confidence level for the rest Parameter 𝛬CD M Exponential Tsujikawa Starobinsky (n=1) 100 𝛺 𝑏 ℎ 2 2.23±0.03 2.23 −0.02 +0.03 𝛺 𝑐 ℎ 2 0.118±0.002 0.117 −0.002 +0.003 𝛴 𝑚 𝜈 < 0.20 eV < 0.21 eV < 0.18 eV < 0.25 eV model parameter 0 .651 −0.129 +0.290 0.685 −0.064 +0.315 0.377 −0.260 +0.154 Best fit 𝜒 2 13459.3 13457.6 13457.0 13457.7 Parameter Starobinsky (n=2) Hu-Sawicki (p=2) Hu-Sawicki (p=4) 𝛺 𝑏 ℎ 2 2.23±0.03 𝛺 𝑐 ℎ 2 0.118±0.002 0.117 −0.002 +0.003 𝛴 𝑚 𝜈 < 0.20 eV < 0.25 eV model parameter 0 .673 −0.082 +0.327 0.373 −0.250 +0.157 0 .676 −0.079 +0.324 Best fit 𝜒 2 13458.2 13456.9

Observational Constraints on Viable f(R) Gravity Models modify background Allowed regions:1 𝜎 (68%) confidence level for model parameter 2 𝜎 (95%) confidence level for the rest Parameter 𝛬CD M Exponential Tsujikawa Starobinsky (n=1) 100 𝛺 𝑏 ℎ 2 2.23±0.03 2.23 −0.02 +0.03 𝛺 𝑐 ℎ 2 0.118±0.002 0.118 −0.003 +0.002 𝛴 𝑚 𝜈 < 0.20 eV < 0.22 eV model parameter 0 .566 −0.174 +0.285 0 .675 −0.075 +0.325 0 .286 −0.224 +0.098 Best fit 𝜒 2 13459.3 13458.8 13458.4 13459.6 Parameter Starobinsky (n=2) Hu-Sawicki (p=2) Hu-Sawicki (p=4) 𝛺 𝑏 ℎ 2 2.23±0.03 2.24 −0.03 +0.02 𝛺 𝑐 ℎ 2 0.118±0.002 0.117 −0.002 +0.003 𝛴 𝑚 𝜈 < 0.21 eV < 0.25 eV < 0.20 eV model parameter 0 .637 −0.103 +0.363 0 .377 −0.254 +0.153 0 .682 −0.079 +0.318 Best fit 𝜒 2 13456.9 13459.0 13456.4